
2.4.1 Show that the exponential signal sn = AeΛn is an eigensignal

of the time advance operator. What is its eigenvalue?

An operator usually tranforms a signal into a profoundly different signal,
but eigensignals are not fundamentally changed, they merely acquire a trivial
gain.

In other words, an eigensignal sn of an operator Ô obeys

Ô sn = λsn

where λ, the eigenvalue, is a constant real number.
The time advance operator ẑ is defined as the operation of returning now

the value the signal will be next time

ẑ sn = sn+1

which usually requires a crystal ball.

Of course, for deterministic signals we know what the signal’s value will
be for any time, and there is no problem with predicting its value at time

n + 1. However, for stochastic signals, or signals not under our complete
control, the time advance operator is not implementable in real time, and
for this reason we usually work with the time delay operator ẑ−1.

For deterministic signals it is easy to apply the time advance operator;
we need simply replace n with n + 1.

ẑ sn = sn+1 = AeΛ(n+1) = AeΛn+Λ = AeΛeΛn = eΛ(AeΛn) = eΛsn

so sn = AeΛn is indeed an eigensignal of ẑ and the eigenvalue is eΛ.

The real sinusoid sn = A sin(ωn+φ) is the eigensignal of an operator

that contains z−1 and z−2. Can you find this operator?

The question is in principle similar to the first part, but somewhat more

challenging from a technical point of view. We are asked to find an operator
that contains two time delays; we will assume the simplest combination,

namely a weighted linear combination.

Ô = az−1 + bz−2

What does this combination do to a signal sn?

Ô sn = (aẑ−1 + bẑ−2)sn = aẑ−1sn + bẑ−2sn = asn−1 + bsn−2 (1)

Now we are interested in applying this operator to a digital sinusoid

sn = A sin(ωn + φ)



and finding values a and b such that

sn = asn−1 + bsn−2 (2)

that is, for which the following holds.

A sin(ωn + φ) = a A sin(ω(n − 1) + φ) + b A sin(ω(n − 2) + φ)

The straight forward way of finding if this is can be true, and for which

a and b involves using a lot of trigonometric identities.

sn−1 = A sin(ω(n− 1) + φ)

= A sin((ωn + φ) − ω)

= A sin(ωn + φ) cos(ω) − A cos(ωn + φ) sin(ω)

sn−2 = A sin(ω(n− 2) + φ)

= A sin((ωn + φ) − 2ω)

= A sin(ωn + φ) cos(2ω) − A cos(ωn + φ) sin(2ω)

= A sin(ωn + φ)(2 cos2(ω)− 1) − A cos(ωn + φ)(2 sin(ω) cos(ω))

= 2 cos(ω) [A sin(ωn + φ) cos(ω)− A cos(ωn + φ) sin(ω)]− A sin(ωn + φ)

Now, the expression in the square brackets on the last line is precisely
what we found for sn−1 and the final term is sn itself. So we have found
sn−2 = 2 cos(ω)sn−1 − sn or

sn = 2 cos(ω)sn−1 − sn−2 (3)

and by comparing this to 2 we see that indeed all digital sinusoids obey a
second order difference equation, and that a = 2 cos(ω) and b = −1. Using

precisely the same manipulations, the sinusoid’s equation is found for analog
sinusoids on page 249 of the book.

The above proof is straightforward, but somewhat tiring. There are sev-
eral ways to simplify the algebra. One way is to realize that equation 1 can

be rewritten
sn+1 = asn + bsn−1

without changing its meaning. This time we will assume φ = 0 in order to
further simplify.

A sin(ω(n + 1)) = a A sin(ωn) + b A sin(ω(n − 1))

Now the left hand side is

A sin(ωn) cos(ω) + A cos(ωn) sin(ω)



and the right hand side is only slight more complex.

a A sin(ωn) + b (A sin(ωn) cos(ω) − A cos(ωn) sin(ω))

By comparing the coefficient of cos(ωn) on both sides we find b = −1, and
then comparing the coefficients of sin(ωn) leads us directly to a = 2 cos(ω).

Another way of going about this is to use complex exponentials. As usual,
this significantly simplifies the algebra as we don’t need difficult trigonomet-

ric identities.

eiωn = aeiω(n−1) + beiω(n−2) =
(

ae−iω + be−2iω
)

eiωn

For this to hold,

ae−iω + be−2iω = 1

but note that trivially

(eiω + e−iω)e−iω
− e−2iω = 1

so a = (eiω + e−iω) = 2 cos(ω) and b = −1.

Our last solution will be a bit more elegant. Observe what the time
advance and time delay operators do to a generic sinusoid.

ẑ+1 sin(ωn + φ) = sin(ωn + φ) cos(ω) + cos(ωn + φ) sin(ω)

ẑ−1 sin(ωn + φ) = sin(ωn + φ) cos(ω) − cos(ωn + φ) sin(ω)

We can define an operator to be the average of the time delay and time

advance operators, that is, ζ̂ = 1
2 (ẑ−1 + ẑ+1). Based on the above equations,

when this operator is applied to a generic sinusoid, the second terms above

cancel.
ζ̂ sin(ωn + φ) = cos(ω) sin(ωn + φ) (4)

Therefore sn = sin(ωn+φ) is an eigensignal of the operator ζ̂ with eigenvalue
cos(ω)! The solution to the exercise is now immediate.


