
Multiplication using the FFT

We previously saw that the simple algorithm of long multiplication is equivalent
to a convolution for each output digit, and thus has complexity of O(N2) where
N is the number of bits in the multiplicands. Later we saw that the Toom-Cook
algorithm lowered the complexity to O(N log

2
3) but remarked that using the

FFT we can lower the complexity even further. What is the connection between
an algorithm for converting signals form the time domain representation to the
frequency domain one and simple multiplication? That is the subject of this
note.

Remember how we multiply two N -bit integers a = aN−1aN−2 . . . a3a2a1a0 and
b = bN−1bN−2 . . . b3b2b1b0. we saw that the formula for the nth bit of the
output c is formally a convolution cn =

∑

l albn−l where l runs over all integral
values that make sense. Convolutions remind us of filtering signals in the time
domain. Indeed, we can think of each integer as a signal in the time domain
representation; a signal that for each time may take only one of two values – 0
or 1.

Let’s make this concrete by taking N = 4. The 4-bit numbers are 0 = 0000,
1 = 0001, 2 = 0010, . . . 14 = 1110, 15 = 1111. We can represent the binary
number a = aN−1aN−2 . . . a3a2a1a0 by the signal a = (a0, a1, a2, . . . aN−2aN−1)
in the time domain. Note that since the index 0 represents the earliest time,
it appears first in the time representation, although as LSB it appeared last in
the bit representation. All the 4-bit binary numbers with their time domain
representations are given in the following table.

a bit representation time representation

0 0000 (0, 0, 0, 0)
1 0001 (1, 0, 0, 0)
2 0010 (0, 1, 0, 0)
3 0011 (1, 1, 0, 0)
4 0100 (0, 0, 1, 0)
5 0101 (1, 0, 1, 0)
6 0110 (0, 1, 1, 0)
7 0111 (1, 1, 1, 0)
8 1000 (0, 0, 0, 1)
9 1001 (1, 0, 0, 1)
10 1010 (0, 1, 0, 1)
11 1011 (1, 1, 0, 1)
12 1100 (0, 0, 1, 1)
13 1101 (1, 0, 1, 1)
14 1110 (0, 1, 1, 1)
15 1111 (1, 1, 1, 1)

Now we can check that the convolution formula really works. We will limit
ourselves to products that fit into 4 bits 0 ∗ s = 0, 1 ∗ s = s, 2 ∗ 3 = 6, 2 ∗ 4 = 8,
2 ∗ 5 = 10, 2 ∗ 6 = 12,2 ∗ 7 = 14, 3 ∗ 4 = 12, and 3 ∗ 5 = 15.

We will further use superscripts to indicate which number the time representa-
tion represents; e.g., s[10] represents the number 10, so that s[10] = (0, 1, 0, 1),

i.e., s
[10]
0 = 0, s

[10]
1 = 1, s

[10]
2 = 0, and s

[10]
3 = 1. Using this notation the formula

for the nth bit of the output is easily given by s
[a∗b]
n =

∑n
l=0 s

[a]
l s

[b]
n−l.



For example, let’s see how the convolutions of long multiplication compute 2∗3.

s
[2∗3]
0 = s

[2]
0 s

[3]
0 = 0 ∗ 1 = 0

s
[2∗3]
1 = s

[2]
0 s

[3]
1 + s

[2]
1 s

[3]
0 = 0 ∗ 0 + 1 ∗ 1 = 1

s
[2∗3]
2 = s

[2]
0 s

[3]
2 + s

[2]
1 s

[3]
1 + s

[2]
2 s

[3]
0 = 0 ∗ 1 + 1 ∗ 1 + 0 ∗ 1 = 1

s
[2∗3]
3 = s

[2]
0 s

[3]
3 + s

[2]
1 s

[3]
2 + s

[2]
2 s

[3]
1 + s

[2]
3 s

[3]
0 = 0 ∗ 0 + 1 ∗ 0 + 0 ∗ 1 + 0 ∗ 1 = 0

So s[2∗3] = (0, 1, 1, 0) which is the time representation of 6. The computation
only took 10 multiplications and not the full 42 = 16, since only the last output
bit required all 4 multiplications.

Now that we understand how to convert integer numbers into time domain
signals let’s see how the FFT helps perform multiplications. We know from
our study of filters that all filters obey the law of filters Yk = HkXk. The long
multiplication convolution in the time domain a∗b can be considered a MA filter,
and so can be computed as a simple multiplication in the frequency domain.
Unfortunately, we have the multiplicands in the time domain representation
and desire the product in that domain, so we do what we always do in DSP,
we go back and forth between the representations using the FFT. So instead
of performing the convolution between s[a] and [b], we perform a first FFT to
convert s[a] into its frequency domain representation S[a] , and a second FFT to
convert s[b] into its frequency domain representation S[b]. Now we only need to

perform N simple index-by-index multiplications S
[a]
k S

[b]
k to obtain the answer in

the frequency domain representation, and a final inverse FFT to get the desired
result.

That sounds complicated – is it worth it? Well, the two FFTs and the one iFFT
take O(N log N) each, and the simple element-by-element multiplication takes
O(N), so altogether the complexity is O(N log N). Since this is less than O(N2),
and even less than O(N log

2
3), at least for very large N the FFT approach will

be faster than our previous approaches (N log N is less than Nx for all x > 1).

Let’s return to our 4-bit numbers to see how this works. Remember that the
DFT matrix for N = 4 is

W =









W 0
4 W 0

4 W 0
4 W 0

4

W 0
4 W 1

4 W 2
4 W 3

4

W 0
4 W 2

4 W 4
4 W 6

4

W 0
4 W 3

4 W 6
4 W 9

4









=









1 1 1 1
1 −i −1 i

1 −1 1 −1
1 i −1 −i









since W4 = e−i2π/4 = −i.

We can use this matrix to find all the frequency domain representation of the
4-bit numbers. All we have to do is to multiply the vectors previously given
in the table by this matrix. Of course, using the DFT requires N2 complex
multiplications (in this case 16), but were we to use the FFT we would obtain
the same result. In any case for N = 4 there are no true multiplications at all!
Only negations and multiplications by i which merely interchange the real and
imaginary parts.

Without further ado we present the desired representations in the following
table, and invite the reader to verify the entries.



a time representation frequency representation

0 (0, 0, 0, 0) (0, 0, 0, 0)
1 (1, 0, 0, 0) (1, 1, 1, 1)
2 (0, 1, 0, 0) (1, -i, -1, +i)
3 (1, 1, 0, 0) (2, 1-i, 0, 1+i)
4 (0, 0, 1, 0) (1, -1, 1, -1)
5 (1, 0, 1, 0) (2, 0, 2, 0)
6 (0, 1, 1, 0) (2, -1-i, 0, -1+i)
7 (1, 1, 1, 0) (3, -i, 1, +i)
8 (0, 0, 0, 1) (1, +i, -1, -i)
9 (1, 0, 0, 1) (2, 1+i, 0, 1-i)
10 (0, 1, 0, 1) (2, 0, -2, 0)
11 (1, 1, 0, 1) (3, 1, -1, 1)
12 (0, 0, 1, 1) (2, -1+i, 0, -1-i)
13 (1, 0, 1, 1) (3, +i, 1, -i)
14 (0, 1, 1, 1) (3, -1, -1, -1)
15 (1, 1, 1, 1) (4, 0, 0, 0)

We can note a few interesting things here. The first element in the frequency
domain is the sum of all elements (i.e., the un-normalized DC component).
Hence s[15] which is constant and has only a DC component, is zero for all
S15

k>0, and of course S15
0 = 4. (We are using the convention that the DFT has

no normalization while the iDFT has the 1/N . Were we to do it the other way
around the DC component would be the average value, rather than the sum.)
Also, s[5] is similar to the Nyquist signal s[Nyquist] = (+1,−1, +1,−1), except

for an offset which is equivalent to a DC component; hence S
[5]
k is only non-zero

for k = 0 and k = 2 which corresponds to the Nyquist frequency (the standard
order is from DC to sampling frequency). Finally, note that the four signals
s[1], s[2], s[4], and s[8] all have the same energy for all frequencies, making them
white noise.

Now let perform in the frequency domain the same calculation 2 ∗ 3 that we
performed above in the time domain.

S
[2∗3]
0 = S

[2]
0 S

[3]
0 = 1 ∗ 2 = 2

S
[2∗3]
1 = S

[2]
1 S

[3]
1 = −i ∗ (1 − i) = −1 − i

S
[2∗3]
2 = S

[2]
2 S

[3]
2 = −1 ∗ 0 = 0

S
[2∗3]
3 = S

[2]
3 S

[3]
3 = i ∗ (1 + i) = −1 + i

We see that the answer is S[2∗3] = (2,−1 − i, 0,−1 + i) which is indeed S[6]. It
took us just 4 complex multiplications to do this, but of course we needed to
prepare the table first.

We leave it to the reader to check all the possible multiplications that fit into 4
bits. It is obvious that multiplication by S[0] = (0, 0, 0, 0) always gives S[0] and
that multiplication by S[1] = (1, 1, 1, 1) returns the multiplicand.

The only problem here is for 32.

S
[9]
0 = 2 but S

[3]
0 S

[3]
0 = 4

S
[9]
1 = 1 − i but S

[3]
1 S

[3]
1 = 2i

S
[9]
2 = 0 and S

[3]
2 S

[3]
2 = 0

S
[9]
3 = 1 + i but S

[3]
3 S

[3]
3 = −2i



What’s going on?

Going back to the original long multiplication

s
[3∗3]
0 = s

[3]
0 s

[3]
0 = 1 ∗ 1 = 1

s
[3∗3]
1 = s

[3]
0 s

[3]
1 + s

[3]
1 s

[3]
0 = 1 ∗ 1 + 1 ∗ 1 = 2

s
[3∗3]
2 = s

[3]
0 s

[3]
2 + s

[3]
1 s

[3]
1 + s

[3]
2 s

[3]
0 = 1 ∗ 0 + 1 ∗ 1 + 0 ∗ 1 = 1

s
[3∗3]
3 = s

[3]
0 s

[3]
3 + s

[3]
1 s

[3]
2 + s

[3]
2 s

[3]
1 + s

[3]
3 s

[3]
0 = 1 ∗ 0 + 1 ∗ 0 + 0 ∗ 1 + 0 ∗ 1 = 0

we see that we need to perform a carry from the column to the third! The
frequency domain calculation is precisely the convolution without the carry. So,
we need to convert the answer back into the time domain and perform the
carry. In the worst case performing carries takes another N steps (i.e., yet
another O(N)) and so doesn’t change the complexity.

So, let’s do it! Multiplying in the frequency domain we get S[3] ∗ S[3] =
(4, 2i, 0,−2i). Converting back into the time representation using the inverse
of the W matrix gives us (1, 2, 1, 0) as expected. The LSB is OK, but the next
value is 2. We change this to 0 and carry 1. Adding 1+1 we get yet another 2, so
we leave a 0 and carry 1. We finally get (1, 0, 0, 1) which correctly corresponds
to 9.

It is straightforward to verify that no other products of 4 bits require a carry,
and that our procedure correctly produces the expected results.

What happens when the product doesn’t fit into 4 bits? For example, it is easy
to see that S[4∗4] = S[4] · S[4] = (1,−1, 1,−1) · (1,−1, 1,−1) = (1, 1, 1, 1) = S[1]

which corresponds to 1 and not 16. What’s going on?

To accommodate all products of 4-bit numbers we need 16 bits, and the un-
certainty theorem tell us that the frequency representation will be of higher
resolution. The DFT matrix for N = 8 is based on W8 = e−i2π/8 = 1−i√

2
.

W =

























W 0
8 W 0

8 W 0
8 W 0

8 W 0
8 W 0

8 W 0
8 W 0

8

W 0
8 W 1

8 W 2
8 W 3

8 W 4
8 W 5

8 W 6
8 W 7

8

W 0
8 W 2

8 W 4
8 W 6

8 W 8
8 W 10

8 W 12
8 W 14

8

W 0
8 W 3

8 W 6
8 W 9

8 W 12
8 W 15

8 W 18
8 W 21

8

W 0
8 W 4

8 W 8
8 W 12

8 W 16
8 W 20

8 W 24
8 W 28

8

W 0
8 W 5

8 W 10
8 W 15

8 W 20
8 W 25

8 W 30
8 W 35

8

W 0
8 W 6

8 W 12
8 W 18

8 W 24
8 W 30

8 W 36
8 W 42

8

W 0
8 W 7

8 W 14
8 W 21

8 W 28
8 W 35

8 W 42
8 W 49

8

























=

























1 1 1 1 1 1 1 1
1 W8 −i W 3

8 −1 W 5
8 +i W 7

8

1 −i −1 +i 1 −i −1 +i

1 W 3
8 +i W8 −1 W 7

8 −i W 5
8

1 −1 1 −1 1 −1 1 −1
1 W 5

8 −i W 7
8 −1 W8 +i W 3

8

1 +i −1 −i 1 +i −1 −i

1 W 7
8 +i W 5

8 −1 W 3
8 −i W8

























where W 3
8 =

√
2

2 (−1 − i), W 5
8 =

√
2

2 (−1 + i), and W 7
8 =

√
2

2 (1 + i).



We can now try, say, 7*8.

S[7] =

(

3, 1 +

√
2

2
(1 − i),−i, 1−

√
2

2
(1 + i), 1, 1−

√
2

2
(1 − i), i, 1 +

√
2

2
(1 + i)

)

S[8] =

(

1,

√
2

2
(−1 − i), i,

√
2

2
(1 − i),−1,

√
2

2
(1 + i),−i,

√
2

2
(−1 + i)

)

so that

S[7] ∗ S[8] =
(

3,−(
√

2 + 1), 1, (
√

2 − 1),−1, (
√

2 − 1), 1,−(
√

2 + 1)
)

which corresponds in the time representation to (0, 0, 0, 1, 1, 1, 0, 0), i.e., the
binary number 00111000, which is exactly 56.

It is left for the reader to check all the rest of the products, noting that for eight
bits there a higher percentage of products requiring carries. In fact, while for
four bits there was only one product requiring a carry, 165 of the 736 distinct
eight-bit products that fit into eight bits require carries - about 22 percent.


