
Finding poles and zeros of a filter.

Let’s start with a filter in the usual (al, bm) form.
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First, we create the symmetric (αl, βm) form by moving all the y terms to
the left side.
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Next, we write this as an equation for signals (rather than an equation for
values in the time domain).
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ẑ−2

)

x

Now we take the z transform of both sides, using the fundamental theorem
zT(ẑ−1x) = z−1zT(x).
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This means that
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But Y (z) = H(z)X(z) so we have found the transfer function of this filter:
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Multiplying top and bottom by z2 we obtain
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which can be factored as follows:
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which is a rational function (the ratio of two polynomials in z).

The zeros of the transfer function are the roots of the polynomial in the
numerator. These are easily seen to be 1 and 1

2
.

The poles of the transfer function are the roots of the polynomial in the

denominator. A little algebra shows that these are −
1

2
(1 ± i).

We see that there are zeros to the left of the y axis (low frequencies), includ-
ing on at DC, and there are poles to the right of the y axis (high frequencies),
so we can conclude that this is a high-pass filter. To understand this, you can

input DC (xn = . . .+1+1+1+1 . . .) and Nyquist (xn = . . .−1+1−1+1 . . .)
to the original equation in the time domain and see what you get. Alterna-

tively, look at the transfer function only on the unit circle by substituting
z = eiωn and find the frequency response H(ω).

Finally, we can draw the pole-zero diagram of the filter, which determines

the filter to within a gain factor.


