Finding poles and zeros of a filter.
Let's start with a filter in the usual $\left(a_{l}, b_{m}\right)$ form.

$$
y_{n}=x_{n}-\frac{3}{2} x_{n-1}+\frac{1}{2} x_{n-2}-y_{n-1}-\frac{1}{2} y_{n-2}
$$

First, we create the symmetric $\left(\alpha_{l}, \beta_{m}\right)$ form by moving all the $y$ terms to the left side.

$$
y_{n}+y_{n-1}+\frac{1}{2} y_{n-2}=x_{n}-\frac{3}{2} x_{n-1}+\frac{1}{2} x_{n-2}
$$

Next, we write this as an equation for signals (rather than an equation for values in the time domain).

$$
\left(1+\hat{z}^{-1}+\frac{1}{2} \hat{z}^{-2}\right) y=\left(1-\frac{3}{2} \hat{z}^{-1}+\frac{1}{2} \hat{z}^{-2}\right) x
$$

Now we take the z transform of both sides, using the fundamental theorem $\mathrm{zT}\left(\hat{z}^{-1} x\right)=z^{-1} \mathrm{zT}(x)$.

$$
\left(1+z^{-1}+\frac{1}{2} z^{-2}\right) Y(z)=\left(1-\frac{3}{2} z^{-1}+\frac{1}{2} z^{-2}\right) X(z)
$$

This means that

$$
Y(z)=\frac{\left(1-\frac{3}{2} z^{-1}+\frac{1}{2} z^{-2}\right)}{\left(1+z^{-1}+\frac{1}{2} z^{-2}\right)} X(z) 200
$$

But $Y(z)=H(z) X(z)$ so we have found the transfer function of this filter:

$$
H(z)=\frac{\left(1-\frac{3}{2} z^{-1}+\frac{1}{2} z^{-2}\right)}{\left(1+z^{-1}+\frac{1}{2} z^{-2}\right)}
$$

Multiplying top and bottom by $z^{2}$ we obtain

$$
H(z)=\frac{\left(z^{2}-\frac{3}{2} z+\frac{1}{2}\right)}{\left(z^{2}+z+\frac{1}{2}\right)}
$$

which can be factored as follows:

$$
H(z)=\frac{(z-1)\left(z-\frac{1}{2}\right)}{\left(z+\frac{1}{2}(1+\mathrm{i})\right)\left(z+\frac{1}{2}(1-\mathrm{i})\right)}
$$

which is a rational function (the ratio of two polynomials in $z$ ).
The zeros of the transfer function are the roots of the polynomial in the numerator. These are easily seen to be 1 and $\frac{1}{2}$.

The poles of the transfer function are the roots of the polynomial in the denominator. A little algebra shows that these are $-\frac{1}{2}(1 \pm \mathrm{i})$.

We see that there are zeros to the left of the y axis (low frequencies), including on at DC , and there are poles to the right of the y axis (high frequencies), so we can conclude that this is a high-pass filter. To understand this, you can input $\mathrm{DC}\left(x_{n}=\ldots+1+1+1+1 \ldots\right)$ and Nyquist ( $x_{n}=\ldots-1+1-1+1 \ldots$ ) to the original equation in the time domain and see what you get. Alternatively, look at the transfer function only on the unit circle by substituting $z=e^{\mathrm{i} \omega n}$ and find the frequency response $H(\omega)$.

Finally, we can draw the pole-zero diagram of the filter, which determines the filter to within a gain factor.


