
In section 14.2 it is shown how to multiply two N -bit numbers using
O(N log2(3)) ≈ O(N 1.585) bitwise operations, instead of the N 2 that standard
long multiplication takes. The explanation is somewhat overly concise, so
here I will show all the steps.

The problem is how to multiply A times B to get C. A and B are N -bit
numbers, and we shall assume that N is a power of two.

The first step is to divide A into two halves, which we call the left (most
significant) half AL, and the right (least significant) half AR. For example, if
N = 8 and A = 137, then in bits we have A = 10001001, so that AL = 1000
and AR = 1001. Note that in this example A = ALshl4 + AR, where shl
stands for the left linear shift operator, which is the same as multiplying by
24 = 16, A = 16AL + AR. More generally

A = AL shl
N

2
+ AR = AL2

N
2 + AR

and similarly dividing B into two halves, leads us to

B = BL shl
N

2
+ BR = BL2

N
2 + BR

which are the first two lines of equation 14.1.
Multiplying A times B gives

C = (AL2
N
2 +AR) (BL2

N
2 +BR) = ALBL2N +(ALBR +ARBL)2

N
2 +ARBR

which consists of 4 products of N
2 -bit numbers, and so takes 4N

2

2 = N 2 bit-
wise multiplications, and so we have not gained anything. However, it is easy
to convince oneself that this is the same as the expression in equation 14.1

C = ALBL(2N + 2
N
2) + (AL − AR)(BR − BL)2

N
2 + ARBR(2

N
2 + 1)

(it may be hard to figure out what to add and subtract to arrive at this
formula, but it is easy to check).

As stated in the book, this expression for C involves only three multi-
plications of N

2 -length numbers (well, actually (AL − AR) and (BR − BL)
can be N

2 + 1 bits in length, but let’s neglect that). So, since these mul-
tiplications are certainly be carried out using standard long multiplication,
each takes (N

2)2 bitwise multiplication operations, so that the three together
require 3(N

2)2 = 3
4N 2 bitwise multiplies. This is 25% less than standard long

multiplication.
Note that we are not counting the multiplications by 2N or 2

N
2 as these

are just bit shifts, not true multiplications. Similarly, we are ignoring the
addition operations.

We save 25% if we carry out the three multiplications using standard
long multiplication. However, there is no reason to multiply AL by BL in
this way, after we have learned the trick. Instead, we divide AL into ALL

and ALR such that AL = ALL2
N
4 + ALR and similarly for BL. We do the

same for the other two products as well. This reduces the complexity by a
further 25%.

Now, since we assumed that N is a power of two, we can continue dividing
the parts of A ad B until we get to single bits. Since we know how to multiply
single bits, we are done.

How many times do we have to divide the numbers in half ? Well, we
started with N bits, after the first split we have numbers with N

2 bits, after
the second we are left with numbers with N

4 bits, etc. It is easy to see that
we need to do this log2 N times. For example, for N = 8, log2 8 = 3. The
first division leads to 4-bit numbers, the second to 2-bit numbers, and indeed
the third to 1-bit numbers.

How many bitwise multiplications are left to be performed at the end?
Well, since at the kth level we have 3k multiplications, at the final (log2 N)th

level we have 3log2 N of them. All of this is made clearer in the figure.

Level 0 - 1 n-bit number

Level 1 - 3 n/2 -bit numbers

Level 2 - 9 n/4 -bit numbers

Level k - 3k n/2k -bit numbers

Level log2n - 3log2n 1-bit numbers

We found that we need 3log2 N operations. It is surprising that 3log2 N =
N log2 3 (didn’t you learn that in high-school?). Let’s see why. N can always
be written 2log2 N , so

N log2 3 = 2(log2 N)(log2 3)

= 2(log2 N)(log2 3)

= 2(log2 3)(log2 N)

= 2(log2 3)(log2 N)

= 3log2 N

as promised.
So we have proven that by successively dividing the factors in two, we

can reduce the complexity from O(N 2) to O(N log2(3)) ≈ O(N 1.585).
However, the complexity can be further reduced by using the FFT. To

see why, let’s rename the numbers we wish to multiply a and b, to emphasize
that they are in a time domain representation. For example, if we wish to
multiply 137 times 85, then a is the time domain sequence 10001001, and b

is 01010101. We saw that to multiply these in the time domain requires a
convolution, which means we need to shift a versus b and at each shift mul-
tiply the corresponding elements. This is what leads to the N 2 complexity.
However, we can convert a to A (the frequency domain representation) in
N log2 N operations, and similarly b to B. The multiplication of A and B is
not a convolution, but simply a bit by bit multiplication (with no carries!).
This takes only N operations to perform. Finally we have to convert the re-
sultant C in the frequency domain, back to c in the time domain, at the cost
of another N log2 N operations. Altogether we have 3O(N log2 N) + O(N)
which is O(N logN).

