Part 2
 Signal Processing Systems

0368.3464
עיבוד ספרתי של אותות
Digital Signal Processing for Computer Science

AKA

Digital Signal Processing - Algorithms and Applications

Systems

A signal processing system has signals as inputs and outputs
The most common type of system has a single input and output
A system is called causal
if y_{n} depends on x_{n-m} for $m \geq 0$ but not on x_{n+m}
A system is called linear (note - does not mean $y_{n}=a x_{n}+b$!)
if $\mathrm{x}_{1} \rightarrow \mathrm{y}_{1}$ and $\mathrm{x}_{2} \rightarrow \mathrm{y}_{2}$ then $\left(a \mathrm{x}_{1}+\mathrm{bx}_{2}\right) \rightarrow\left(a \mathrm{y}_{1}+b \mathrm{by}_{2}\right)$
A system is called time invariant if it has no internal clock
if $x \rightarrow y$ then $\hat{z}^{n} x \rightarrow \hat{z}^{n} y$
A system that is both linear and time invariant is called a filter

Exercise time!

Which of the following are signal processing systems (we shall use x for inputs and y for outputs)? Explain. $\quad \mathbf{x}$ and \mathbf{y} must be signals!

1. The identity $y=x$
2. The constant $y=k$ irrespective of x
3. $y= \pm \sqrt{x}$
4. A device that inputs a pizza and outputs a list of its ingredients
5. $y=\sin \left(\frac{1}{t}\right)$
6. $y(t)=\int_{-\infty}^{t} x(t)$
7. The Fourier transform
8. A television
9. $\mathrm{A} \mathrm{D} / \mathrm{A}$ converter

Example systems

- Identity system $y_{n}=x_{n}$
- Amplifier (gain) $y_{n}=g x_{n}$
- Saturator $y_{n}=\operatorname{sign}\left(x_{n}\right)$

What does this do to a sinusoid?
How is it related to the amplifier?
Why is DSP better than electronics? (see next slide)

- Time by time functions $y_{n}=f\left(x_{n}\right)$

These are not interesting since they don't involve time

- Delay $y=\hat{z}^{-1} x$ (i.e., $y_{n}=x_{n-1}$)
- First time difference $y=\widehat{\Delta} x$ (i.e., $y_{n}=x_{n}-x_{n-1}$)
- Smoother $y_{n}=\frac{1}{4} x_{n-1}+\frac{1}{2} x_{n}+\frac{1}{4} x_{n+1}$ (not causal!)

How can we make it causal?

DSP is better than electronics

Analog electronic amplifiers have

- maximum output voltage (power supply voltage)
- cut-in voltage

- nonlinearities

In DSP we can multiply exactly
(we'll see later why overflow/underflow won't concern us)

Filters

Filters have a property in the frequency domain (the filter law)

$$
Y(\omega)=H(\omega) X(\omega) \quad Y_{k}=H_{k} X_{k}
$$

In particular, if the input has no energy at frequency f then the output also has no energy at frequency f
(what you get out of it depends on what you put into it)
This is the reason to call it a filter
just like a colored light filter (or a coffee filter ...)
Filters are used for many purposes, for example

- filtering out noise or narrowband interference
- separating two signals
- integrating and differentiating (why are these filters???)
- emphasizing or de-emphasizing frequency ranges

Why is the amplifier a filter? (explain why linear and TI, and in frequency domains) What is $\mathrm{H}(\omega)$ for the delay system?

How does the filter law work?

$H(\omega)$ is called the frequency response

Frequency response

In general $\mathrm{H}(\omega)$ is a complex number

- The absolute value is the gain how much the sinusoid is amplified or attenuated
- The phase is the phase shift how much the sinusoid is delayed
x
y
x
y
$H(\omega)$ is a function of ω a filter need not do the same thing to all frequencies!
Many time we use filters that are low-pass, high-pass, etc. but not all filters are like that

low pass

high pass

band pass

band stop

Types of filters

What kind of analog filter is an anti-aliasing filter?

Nonfilters

If a system is not linear it does not obey the filter law!
For example, $y_{n}=x_{n}+\epsilon x_{n}{ }^{2}$

$$
\sin ^{2}(\phi)=1 / 2-1 / 2 \cos (2 \phi)
$$

if $x_{n}=\sin (\omega n)$ then $y_{n}=\sin (\omega n)+\epsilon / 2-\epsilon / 2 \cos (2 \omega n)$
So the input spectrum has 1 component and the output spectrum has 3!

If a system is not time invariant it is not a filter!
For example, $y(t)=e^{i \Omega t} x(t)$

if $x(t)=e^{i \omega t}$ then $y(t)=e^{i \Omega t} e^{i \omega t}=e^{i(\Omega+\omega) t}$

Why did we use complex exponentials here ?
What happens to a more general spectrum ?

Question 1

To understand our first kind of filter we'll look at an example We know that a signal is DC (a constant $s_{n}=k$) but only see a noisy version $x_{n}=s_{n}+v_{n}$ where the noise signal v_{n} is DC-free (zero average)
How do we discover k (recover s_{n}) ?

We average over as much time as we can $\mathrm{k}=\left\langle\mathrm{x}_{\mathrm{n}}\right\rangle=\left\langle\mathrm{s}_{\mathrm{n}}+\mathrm{v}_{\mathrm{n}}\right\rangle=\left\langle\mathrm{S}_{\mathrm{n}}\right\rangle+\left\langle\mathrm{v}_{\mathrm{n}}\right\rangle=\left\langle\mathrm{s}_{\mathrm{n}}\right\rangle+0$
In practice, we take N samples

$$
\mathrm{k}=\frac{1}{N} \sum_{n=0}^{N-1} \mathrm{X}_{\mathrm{n}}
$$

Question 2

We know that a signal s_{n} changes very slowly (has only low frequencies in its spectrum) but only see a noisy version $x_{n}=s_{n}+v_{n}$ where the noise signal v_{n} is DC-free (zero average)

How do we recover s_{n} ?
We average over a window
long enough for the noise to average out
but not so long as to destroy the signal
And then we move on to the next window
This is called Moving Average

$$
\mathrm{y}_{\mathrm{n}}=\frac{1}{L} \sum_{l=-L / 2}^{+L / 2} x_{n-l} \quad(\text { if } L \text { is odd then } 1 /(L+1))
$$

Question 3

The same, but signal s_{n} doesn't change so slowly
(there are higher frequencies in its spectrum)

We perform a (generalized) Moving Average but with non-equal coefficients

$$
\mathrm{y}_{\mathrm{n}}=\sum_{l=n-L / 2}^{n+L / 2} a_{l} x_{n-l} \quad \text { where } \sum a_{l}=1
$$

For example, the smoother $\mathrm{y}_{\mathrm{n}}=\frac{1}{4} \mathrm{x}_{\mathrm{n}-1}+\frac{1}{2} \mathrm{x}_{\mathrm{n}}+\frac{1}{4} \mathrm{x}_{\mathrm{n}+1}$
What coefficients return us to the original MA ?
Why do we often use triangular coefficients?

Question 4

What if the signal s_{n} has a spectrum with all frequencies?

We can still perform Moving Average
but need to find the coefficients based on the frequency domain such that we allow the signal to pass
but block as much noise as possible
This will only work if MA is a filter!

MA is always a filter

Let's check that Moving Average is a filter (linear and time invariant)
LINEARITY
If we multiply the input by a gain g

$$
\mathrm{y}_{\mathrm{n}}{ }^{\prime}=\sum a_{l} g x_{n-l}=\mathrm{g} \sum a_{l} x_{n-l}=\mathrm{g} \mathrm{y}_{\mathrm{n}}
$$

If we add two inputs u and v which give outputs x and y

$$
\sum a_{l}(u+v)_{n-l}=+\sum a_{l} u_{n-l}+\sum a_{l} v_{n-l}=\mathrm{x}_{\mathrm{n}}+\mathrm{y}_{\mathrm{n}}
$$

TIME INVARIANCE
If we shift the input signal by m times (m positive or negative) and the coefficients don't change!

$$
\mathrm{y}_{\mathbf{n}}^{\prime}=\sum a_{l} x_{(n+m)-l}=\left(\sum a_{l} x_{j-l}\right)_{j=n+m}=\mathrm{y}_{\mathrm{n}+\mathrm{m}}
$$

Note that sometimes it is useful to have coefficients
that change slowly over time (to adapt to changing circumstances)
In which case we almost have a filter ...

How to design a digital filter

20 years ago a large part of every DSP course was devoted to how to design digital filters, i.e., given $\mathrm{H}(\omega)$ how to find a_{l}
It is not enough to take the function $\mathrm{H}(\omega)$ and perform an iFT since in practice we would do this in the digital domain S_{k}
and we would have no control over what happens between the discrete frequency points
Here is the algorithm I recommend today $)^{-}$

- Google digital filter design software free download
- Download and install
- We'll learn later about the different filter types for now pick MA (also called FIR) filter
- Enter or draw the desired frequency characteristics
- Press compute coefficients
- View the spectrum
- Try it out

Convolution

We saw that to filter out noise we used the signal processing system

$$
\mathrm{y}_{\mathrm{n}}=\sum_{l=n-L / 2}^{n+L / 2} a_{l} x_{n-l}
$$

This is not causal, a similar causal filter is

$$
\mathrm{y}_{\mathrm{n}}=\sum_{l=0}^{L-1} a_{l} x_{n-l}
$$

These forms of computation are called (finite) convolution
Note that convolution is the sum of products
with one index going up and the other index going down
in this way the sum of the 2 indexes stays the same (n)
We could have made both indexes go in the same direction
which is called correlation (used to compare 2 signals x and y)

$$
\mathrm{C}_{\mathrm{x}, \mathrm{y}}(\mathrm{~m})=\sum x_{l+m} y_{l}
$$

Note that here the indexes both go up together!

Convolution (2)

The word convolution was invented by Norbert Wiener the inventor of cybernetics and DSP

Some DSP courses emphasize correlation and some emphasize convolution the difference being relabeling the coefficients

We'll use convolution and we'll see later why it is the best choice

Convolution (or correlation) appears in many DSP contexts in fact, convolution is so important
that a processor that performs convolution optimally is called a Digital Signal Processor

The echo cave 1

Here is another way convolution occurs
Consider shouting in a cave
the echo you hear is an attenuated copy of what you shouted a roundtrip time ago

$$
y_{n}=x_{n}+a x_{n-\ell} \quad \text { where } \ell \text { is the RTT }
$$

The echo cave 2

But there can be many echoes

$$
y_{n}=x_{n}+a_{1} x_{n-1}+a_{2} x_{n-2}+a_{3} x_{n-3}+a_{4} x_{n-4}+\ldots
$$

If the longest possible echo returns after L times

$$
\begin{array}{cr}
\mathrm{y}_{\mathbf{n}}=\sum_{l=0}^{L-1} a_{l} x_{n-l} & \text { (where } \left.a_{0}=1, \text { all other } 0 \leq\left|a_{l}\right|<1\right) \\
\text { convolution! } & \text { What does } a_{l}<0 \text { mean? }
\end{array}
$$

You already know all about convolution!

long multiplication $\mathrm{B}_{3} \quad \mathrm{~B}_{2} \quad \mathrm{~B}_{1} \quad \mathrm{~B}_{0}$
$\begin{array}{lllll}{ }^{2} & A_{3} & A_{2} & A_{1} & A_{0}\end{array}$
$\mathrm{A}_{0} \mathrm{~B}_{3} \quad \mathrm{~A}_{0} \mathrm{~B}_{2} \quad \mathrm{~A}_{0} \mathrm{~B}_{1} \quad \mathrm{~A}_{0} \mathrm{~B}_{0}$
$A_{1} B_{3} \quad A_{1} B_{2} \quad A_{1} B_{1} \quad A_{1} B_{0}$
$A_{2} B_{3} \quad A_{2} B_{2} \quad A_{2} B_{1} \quad A_{2} B_{0}$
$A_{3} B_{3} \quad A_{3} B_{2} \quad A_{3} B_{1} \quad A_{3} B_{0}$

$$
\mathrm{C}_{3}=\mathrm{A}_{0} \mathrm{~B}_{3}+\mathrm{A}_{1} \mathrm{~B}_{2}+\mathrm{A}_{2} \mathrm{~B}_{1}+\mathrm{A}_{3} \mathrm{~B}_{0}
$$

POLYNOMIAL MULTIPLICATION

$$
\left(a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}\right)\left(b_{3} x^{3}+b_{2} x^{2}+b_{1} x+b_{0}\right)=
$$

$$
a_{3} b_{3} x^{6}+\ldots+\left(a_{3} b_{0}+a_{2} b_{1}+a_{1} b_{2}+a_{0} b_{3}\right) x^{3}+\ldots+a_{0} b_{0}
$$

Picturing Convolution - 0

We chose the coefficients so that the indexes of a and x go in opposite directions
Note that the sum of the input indexes equals the output's index!

$$
y_{n}=\sum_{t=0}^{t-1} a_{i} x_{n-1}
$$

Picturing Convolution - 1

We chose the coefficients so that the indexes of a and x go in opposite directions
Note that the sum of the input indexes equals the output's index!

$$
y_{n}=\sum_{t=0}^{t-1} a_{i} x_{n-1}
$$

Picturing Convolution - 2

We chose the coefficients so that the indexes of a and x go in opposite directions
Note that the sum of the input indexes equals the output's index!

$$
y_{n}=\sum_{t=0}^{t-1} a_{i} x_{n-1}
$$

Picturing Convolution - 3

We chose the coefficients so that the indexes of a and x go in opposite directions
Note that the sum of the input indexes equals the output's index !

$$
y_{n}=\sum_{t=0}^{t-1} a_{k} x_{n-1}
$$

Picturing Convolution-4

We chose the coefficients so that the indexes of a and x go in opposite directions
Note that the sum of the input indexes equals the output's index!

$$
y_{n}=\sum_{t=0}^{h-1} a_{x} x_{n-1}
$$

Picturing Convolution - 5

We chose the coefficients so that the indexes of a and x go in opposite directions
Note that the sum of the input indexes equals the output's index!

$$
y_{n}=\sum_{t=0}^{t-1} a_{i} x_{n-1}
$$

Multiply and Accumulate (MAC)

How do we compute a convolution? (or a correlation?)
We iterate on a basic operation

$$
y \leftarrow y+a_{i}{ }^{*} x_{j}
$$

Since this Multiplies a times x and then ACcumulates the answers it is called a MAC

The MAC is the most basic computational block in DSP
Even computing energy can be done using (degenerate) MACs

$$
E \leftarrow E+x_{i}{ }^{*} x_{i}
$$

Digital Signal Processors are optimized to compute MACs

In the frequency domain

Remember that in DSP we are interested in time and frequency domains
We know what an MA filter does in the time domain - convolution! What does it do in the frequency domain?
What does an MA filter do to a sinusoid of arbitrary frequency ω ?
Here it is much easier to use complex exponentials than sines
So we ask, what does an MA filter do to $\mathrm{x}_{\mathrm{n}}=\mathrm{e}^{\mathrm{i} \omega \mathrm{n}}$ for arbitrary ω
We haven't proven it yet (don't worry - we will later)
but we said that for all filters $\mathrm{Y}(\omega)=\mathrm{H}(\omega) \mathrm{X}(\omega)$
That means that sinusoids are eigensignals of filters
MA-filter ($\left.\mathrm{e}^{\mathrm{i} \omega n}\right)=\mathrm{H}(\omega) \mathrm{e}^{\mathrm{i} \omega n}$
$H(\omega)$ is called the MA frequency response $(0 \leq \omega \leq \pi)$
Why do we look at $H(\omega)$ for all ω instead of H_{k} ? Why don't we look at $\mathrm{H}(\omega)$ for negative ω ?

Simple MA Frequency response

Let's start with a simple noncausal 3-point MA

$$
y_{n}=\frac{1}{3}\left(x_{n-1}+x_{n}+x_{n+1}\right)
$$

First let's ask what this filter does to DC remembering that for DC we can take $\mathrm{x}_{\mathrm{n}}=1$ (for all n)
$y_{n}=\frac{1}{3}(1+1+1)=1$ (for all n) so y is also DC (of course - it had to be!) and $H(D C)=y_{n} / x_{n}=1$

Next let's ask what it does to Nyquist frequency ($\omega=\pi$)
remembering that for Nyquist we take $x_{n}=\ldots-1+1-1+1 \ldots$
For even $n: y_{n}=\frac{1}{3}(-1+1-1)=-\frac{1}{3}$ and for odd $n: y_{n}=\frac{1}{3}(+1-1+1)=\frac{1}{3}$
So y_{n} is $\ldots+\frac{1}{3}-\frac{1}{3}+\frac{1}{3}-\frac{1}{3} \ldots$ which is also a Nyquist signal (it had to be!)

$$
\text { and } H(\omega)=y_{n} / x_{n}=-\frac{1}{3}
$$

We'll only care about $|H(\omega)|$ for now, and $\mid H($ Nyquist $) \left\lvert\,=\frac{1}{3}\right.$

Simple MA Frequency response (cont)

We have already found 2 points on the $|H(\omega)|$ plot Now let's find the rest!
We substitute $\mathrm{x}_{\mathrm{n}}=\mathrm{e}^{\mathrm{i} \omega \mathrm{n}}$ for arbitrary $\omega(0 \leq \omega \leq \pi)$

$$
\begin{aligned}
y_{n} & =\frac{1}{3}\left(e^{\mathrm{i} \omega(n-1)}+e^{\mathrm{i} \omega n}+e^{\mathrm{i} \omega(n+1)}\right) \\
& =\frac{1}{3}\left(e^{\mathrm{i} \omega n} e^{-\mathrm{i} \omega}+e^{\mathrm{i} \omega n}+e^{\mathrm{i} \omega n} e^{+\mathrm{i} \omega}\right) \\
& =\frac{1}{3}\left(e^{-\mathrm{i} \omega}+1+e^{+\mathrm{i} \omega}\right) e^{\mathrm{i} \omega n} \\
& =\frac{1}{3}(1+2 \cos (\omega)) e^{\mathrm{i} \omega n}
\end{aligned}
$$

So y_{n} is a constant times $\mathrm{e}^{\mathrm{i} \omega \mathrm{n}}$ (of course - it had to be!) and $H(\omega)=y_{n} / x_{n}=\frac{1}{3}(1+2 \cos (\omega))$

Why isn't this a nice enough low-pass filter?

What about averaging more?

The frequency response of the more general averaging filter

$$
y_{n}=\frac{1}{2 L+1} \sum_{l=-L}^{L} x_{n+l} \quad \text { is } \quad \frac{\sin \left(\frac{L x}{2}\right)}{L \sin \left(\frac{x}{2}\right)}
$$

The more we average the more low-pass the filter becomes! Why?

Frequency response 2

As another example let's look at the simple smoother filter

$$
y_{n}=\frac{1}{4} x_{n-1}+\frac{1}{2} x_{n}+\frac{1}{4} x_{n+1}
$$

For DC $y_{n}=\frac{1}{4}+\frac{1}{2}+\frac{1}{4}=1$ (for all n) so $H(D C)=y_{n} / x_{n}=1$
For Nyquist (even n) $y_{n}=\frac{1}{4}(-1)+\frac{1}{2}(+1)+\frac{1}{4}(-1)=0$ so H (Nyquist) $=0$
For general frequency we substitute $X_{n}=e^{i \omega n}$

$$
\begin{aligned}
y_{n} & =\frac{1}{4} e^{\mathrm{i} \omega(n-1)}+\frac{1}{2} e^{\mathrm{i} \omega n}+\frac{1}{4} e^{\mathrm{i} \omega(n+1)} \\
& =\frac{1}{4} e^{\mathrm{i} \omega n} e^{-\mathrm{i} \omega}+\frac{1}{2} e^{\mathrm{i} \omega n}+\frac{1}{4} e^{\mathrm{i} \omega n} e^{+\mathrm{i} \omega} \\
& =\left(\frac{1}{4} e^{-\mathrm{i} \omega}+\frac{1}{2}+\frac{1}{4} e^{+\mathrm{i} \omega}\right) e^{\mathrm{i} \omega n} \\
& =\frac{1}{2}(1+\cos (\omega)) e^{\mathrm{i} \omega n}
\end{aligned}
$$

y is a sinusoid of the same frequency (of course - it has to be!) and $|H(\omega)|=1 / 2(1+2 \cos (\omega)) \quad$ Why is this better?

The first finite difference

Last example - the first finite difference in the frequency domain

$$
\left.y=\widehat{\Delta} x \text { (i.e., } y_{n}=x_{n}-x_{n-1}\right)
$$

$H(\omega) e^{i \omega n}=e^{i \omega n}-e^{i \omega(n-1)}$ so $H(\omega)=1-e^{-i \omega}=e^{-i \omega / 2}\left(e^{i \omega / 2}-e^{-i \omega / 2}\right)$
So $|H(\omega)|=2 \sin (\omega / 2)$

This is a high-pass filter!
Why must it be high-pass?
Why is this complex (i.e., why does it have a phase shift)?

Differentiation and Integration

What does the analog derivative look like in the frequency domain?
Here is it easy enough to use sines
The derivative of $\mathrm{x}(\mathrm{t})=\sin (\omega \mathrm{t})$ is $\mathrm{y}(\mathrm{t})=\frac{d x(t)}{d t}=\omega \cos (\omega \mathrm{t})$
so $|H(\omega)|=\omega$ and there is a 90 degree phase shift

What about the analog integral?
The integral of $\mathrm{x}(\mathrm{t})=\sin (\omega \mathrm{t})$ is $\mathrm{y}(\mathrm{t})=\int x(t) d t=-(1 / \omega) \cos (\omega \mathrm{t})$
so $|H(\omega)|=1 / \omega$ and there is a 90 degree phase shift

Convolution and multiplication

We already saw 2 connections between convolution multiplying numbers and polynomials are convolutions
But we now understand a deeper connection
The filter law means that a convolution in the time domain

$$
y_{\mathrm{n}}=\sum_{l=0}^{L-1} a_{l} x_{n-l} \quad \text { many people even write } \mathrm{y}=\mathrm{a} * \mathrm{x}
$$

corresponds to a multiplication in the frequency domain $\mathbf{Y}_{\mathrm{k}}=\mathbf{H}_{\mathbf{k}} \mathbf{X}_{\mathrm{k}}$
So, instead of convolving a and x in the time domain we can move to the frequency domain and multiply

Why $6 * 6$ and not $1+2+3+4+5+6=21$?

The complexity of convolution

In DSP we use either the time domain or the frequency domain whichever is better for the task at hand
To perform convolutions over N elements in the time domain

$$
\mathrm{y}_{\mathrm{n}}=\sum_{l=0}^{N-1} a_{l} x_{n-l} \quad \text { for } \mathrm{n}=0 \ldots \mathrm{~N}-1
$$

requires N times N multiplications (and another $\mathrm{N}^{*}(\mathrm{~N}-1)$ additions) and so the complexity is $\mathrm{O}\left(\mathrm{N}^{2}\right)$
To perform the same thing in the frequency domain $\quad \mathbf{Y}_{k}=\mathbf{H}_{\mathbf{k}} \mathbf{X}_{\mathbf{k}}$ requires only N multiplications
But if we are working in the time domain
we need to first convert a and x into frequency domain A and X and at the end convert Y back into time domain y
To do that we need to perform 2 DFTs $\mathrm{X}_{\mathrm{k}}=\sum_{\boldsymbol{n}=\mathbf{0}}^{\boldsymbol{N}-\mathbf{1}} \boldsymbol{W}_{\boldsymbol{N}}^{-\boldsymbol{n k}} \boldsymbol{x}_{\boldsymbol{n}}$

$$
\text { and } 1 \text { iDFT } \mathrm{y}_{\mathrm{n}}=\frac{\mathbf{1}}{\boldsymbol{N}} \sum_{\boldsymbol{k}=\mathbf{0}}^{N-1} W_{N}^{-n k} \boldsymbol{Y}_{\boldsymbol{k}} \text { each of which is } \mathrm{O}\left(\mathrm{~N}^{2}\right) \text { ! }
$$

What we really need is a lower complexity DFT algorithm!

AR

Computation of convolution is iteration
In CS there is a more general form of 'loop' - recursion
Example: let's average values of input signal up to present time

$$
\begin{array}{ll}
y_{0}=x_{0} & =x_{0} \\
y_{1}=\left(x_{0}+x_{1}\right) / 2 & =1 / 2 x_{1}+1 / 2 y_{0} \\
y_{2}=\left(x_{0}+x_{1}+x_{2}\right) / 3 & =1 / 3 x_{2}+2 / 3 y_{1} \\
y_{3}=\left(x_{0}+x_{1}+x_{2}+x_{3}\right) / 4 & =1 / 4 x_{3}+3 / 4 y_{2} \\
y_{n}=1 /(n+1) x_{n}+n /(n+1) y_{n-1} & =(1-\beta) x_{n}+\beta y_{n-1}
\end{array}
$$

So the present output depends on the present input and previous outputs
In DSP recursion is called AutoRegression (term invented by Udny Yule)
Note: to be time-invariant, β must be non-time-dependent (not like here!)

Unraveling the recursion

Given an AR form we can swap the recursion for an infinite iteration For example, the simplest AR filter is $y_{n}=x_{n}+\beta y_{n-1}$

$$
\begin{aligned}
y_{n} & =x_{n}+\beta y_{n-1} \\
& =x_{n}+\beta\left(x_{n-1}+\beta y_{n-2}\right)=x_{n}+\beta x_{n-1}+\beta^{2} y_{n-2} \\
& =x_{n}+\beta x_{n-1}+\beta^{2}\left(x_{n-2}+\beta y_{n-3}\right)=x_{n}+\beta x_{n-1}+\beta^{2} x_{n-2}+\beta^{3} y_{n-3} \\
& =\cdots \\
& =x_{n}+\beta x_{n-1}+\beta^{2} x_{n-2}+\beta^{3} x_{n-3}+\beta^{4} x_{n-4}+\cdots \\
& =x_{n}+\sum_{m=1}^{\infty} \beta^{m} x_{n-m}=\sum_{m=0}^{\infty} \beta^{m} x_{n-m}
\end{aligned}
$$

In general AR filters can be written as infinite convolutions

$$
\mathrm{y}_{\mathrm{n}}=\sum_{l=0}^{\infty} h_{l} x_{n-l}
$$

Try this for the AR with 2 time delays

AR is a filter

The recursive AR form is an AR (autoregressive) filter
LINEARITY
Start from the infinite convolution form the proof is the same as for the MA filter

TIME INVARIANCE
Start from the infinite convolution form the proof is the same as for the MA filter as long as the coefficients are not time dependent

Frequency response of an AR filter

Let's try our simple AR example $y_{n}=(1-\beta) x_{n}+\beta y_{n-1}$
What happens for DC?

```
we purposely put the input gain back in!
```

We know that for all $n \quad x_{n}=1$ and $y_{n}=H_{0}$

$$
\text { so } H_{0}=(1-\beta)+\beta H_{0} \text { or } H_{0}(1-\beta)=(1-\beta) \text { so } H_{0}=1
$$

What happens for Nyquist ?
We know that $x_{n}=\ldots-1+1-1+1 \ldots$ and $y_{n}=\ldots-H_{\pi}+H_{\pi}-H_{\pi}+H_{\pi} \ldots$

$$
\text { so } H_{\pi}=(1-\beta)-\beta H_{\pi} \text { or } H_{\pi}(1+\beta)=(1-\beta) \text { so } H_{\pi}=(1-\beta) /(1+\beta)
$$

For general frequency ω : $x_{n}=e^{i \omega n}$ and $y_{n}=H(\omega) e^{i \omega n}$

$$
\begin{aligned}
& \text { so } H(\omega) e^{i \omega n}=(1-\beta) e^{i \omega n}+\beta H(\omega) e^{i \omega(n-1)} \text { so } H(\omega)=(1-\beta)+\beta H(\omega) e^{-i \omega} \\
& \text { so } H(\omega)=(1-\beta) /\left(1-\beta e^{-i \omega}\right) \text { Why is this complex (i.e., has a phase shift)? } \\
& \text { and }|H(\omega)|^{2}=1 /\left(1-2 \beta \cos (\omega)+\beta^{2}\right)
\end{aligned}
$$

The AR frequency response

$$
y_{n}=(1-\beta) x_{n}+\beta y_{n-1}
$$

$\beta=0.6$
$\beta=0.7$
$\beta=0.8$

For small $\beta y_{n} \approx x_{n}$ so $H(\omega) \approx 1$
For large βy_{n} can't keep up with x so $H(\omega)$ is very low-pass

$$
\beta=0.95 \quad \beta=0.9
$$

The harder way

But we cheated! We haven't yet proven the filter law
We can find the frequency response of the AR filter from the unraveled form, but without using the filter law

$$
\begin{aligned}
y_{n} & =(1-\beta) e^{i \omega n}+\beta(1-\beta) e^{\mathrm{i} \omega(n-1)}+\beta^{2}(1-\beta) e^{\mathrm{i} \omega(n-2)}+\ldots \\
& =(1-\beta) \sum_{k=0}^{\infty}\left(\beta e^{-\mathrm{i} \omega}\right)^{k} e^{\mathrm{i} \omega n} \\
& =\frac{(1-\beta)}{\left(1-\beta e^{-\mathrm{i} \omega}\right)} e^{\mathrm{i} \omega n}
\end{aligned}
$$

(we used the formula for the sum of an infinite series

$$
\left.\sum_{k=0}^{\infty} q^{k}=\frac{1}{1-q} \quad \text { with } \quad q=\beta e^{-\mathrm{i} \omega}\right)
$$

The accumulator

We once defined the accumulator $\mathrm{y}=\widehat{\mathrm{Y}} \mathrm{x}$

$$
\text { by } y_{n}=\sum_{m=0}^{\infty} x_{n-m}
$$

(the inverse of the first finite difference $-\widehat{\Upsilon} \widehat{\Delta}=\widehat{\Delta} \widehat{Y}=1$)
We can write the accumulator as an AR filter

$$
y_{n}=x_{n}+y_{n-1}
$$

If we input DC this explodes! (AR filters can be unstable) What is the frequency response?

$$
H(\omega) e^{\mathrm{i} \omega n}=e^{i \omega n}+H(\omega) e^{\mathrm{i} \omega(n-1)}
$$

Thus

$$
H(\omega)=\frac{1}{1-e^{-\mathrm{i} \omega}}=-\mathrm{i} e^{\mathrm{i} \omega / 2} \frac{1}{2 \sin (\omega / 2)}
$$

So $|\mathrm{H}(\omega)|$ is very similar to the FR of the true integrator!

MA, AR and ARMA

The general causal system looks like this:

$$
y_{n}=f\left(x_{n}, x_{n-1} \ldots x_{n-1} ; y_{n-1}, y_{n-2}, \ldots y_{n-m} ; n\right)
$$

But the general causal filter has to be
a linear combination of the inputs and outputs

$$
y_{n}=\sum_{n=0}^{L-1} a_{l} x_{n-l}+\sum_{m=1}^{M} b_{m} y_{n-m}
$$

This is called ARMA (it would be hard to say MAAR)
if $b_{m}=0$ then it is MA
if $\mathrm{a}_{0}=0$ and $\mathrm{a}_{\ell>0}=0$ but $\mathrm{b}_{\mathrm{m}} \neq 0$ then it is AR
Why doesn't the ARMA filter depend explicitly on n ?
Why does the sum only include previous inputs and outputs?
Why must the function be a linear combination of them ?
Why does m start at 1 and not 0 ?

Symmetric form of writing ARMA

We can write the ARMA equation in symmetric form by terms moving from side to side

$$
\begin{aligned}
y_{n} & =\sum_{l=0}^{L-1} \alpha_{l} x_{n-l}+\sum_{m=1}^{M} \beta_{m} y_{n-m} \\
y_{n}-\sum_{m=1}^{M} \beta_{m} y_{n-m} & =\sum_{l=0}^{L-1} \alpha^{l} x_{n-l}
\end{aligned}
$$

where

$$
\forall l \quad \alpha_{l}=a_{l} \quad \beta_{0}=1 \quad \forall m>0 \quad \beta_{m}=-b_{m}
$$

This form is a called a difference equation since it can be rewritten as $\sum B_{m} \hat{\Delta}^{m} y=\sum A_{l} \hat{\Delta}^{l} x$
What is the connection between the coefficients?

3 ways of writing the ARMA filter

So far we can write the causal ARMA filter in 3 ways

ARMA form

$$
y_{n}=\sum_{l=0}^{L-1} a_{l} x_{n-l}+\sum_{m=1}^{M} b_{m} y_{n-m}
$$

Symmetric form
(difference equation)

$$
\sum_{m=0}^{M} \beta_{m} y_{n-m}=\sum_{l=0}^{L} \alpha_{l} x_{n-l}
$$

Infinite convolution

$$
y_{n}=\sum_{l=0}^{\infty} h_{l} x_{n-l}
$$

What happens when the filter is MA? AR?
How can we translate between representations?

System identification

Up to now we have discussed
what a known ARMA system does to a given input
Now let's consider the converse problem
We are given an unknown system with one input and one output think of the system as inside a black box which can't be opened

What is known are the input and output to the black box
Can we figure out what is inside the box ?
This is called the system identification problem

Identification?

What do we mean by identifying the system ?
You are given the unknown system for some amount of time
You need to be able to predict the output for any given input
For ARMA systems, it is enough to know any of these:

- ARMA form - L a coefficients and M b coefficients
- symmetric form (difference equation) $L \boldsymbol{\alpha}$ coefficients, $\mathrm{M} \boldsymbol{\beta}$ coefficients
- infinite convolution form all h_{l}
- the frequency response all H_{k}
since from any of these we can calculate the output y for all times

Two flavors

There are two different ways this game can be played

Easy system identification problem

- we are allowed to input any \mathbf{x} we want and observe the output \mathbf{y}
- what input should we use?

Hard system identification problem

- the system is already "hooked up" we can only observe the input \mathbf{x} and output \mathbf{y}
The hard problem is indeed harder than the easy problem for example - what happens if the input is always 0 ?

Filter identification

Is the system identification problem always solvable?

Not if the system characteristics can change over time Since you can't predict what it will do next So only solvable if system is time invariant

Not if system can have a hidden trigger signal So only solvable if system is linear Since for linear systems

- any signal is the sum of the trigger plus the difference
- small changes in input lead to bounded changes in output

So only solvable if system is a filter !

Easy problem Impulse Response (IR)

To solve the easy problem (where we can input any signal(s) we want) we need to decide which input signal x to use

One common choice is the unit impulse the signal that is zero everywhere except at time zero $\mathrm{n}=0$

The response of the filter to an impulse at time zero (UI) is called the impulse response IR (not a surprising name!) תגובה להלם

The impulse response of a filter is universally called h_{n}

What can we say about the impulse response for a causal system?

Some impulse responses

What is the impulse response for an MA filter?

$$
\mathrm{h}_{\mathrm{n}}=\sum_{l=0}^{L-1} a_{l} \delta_{n-l, 0}=a_{n}
$$

So, the MA coefficients are exactly the impulse response
What is the impulse response for an ARMA filter?
Use the infinite convolution form!

$$
\mathbf{h}_{\mathrm{n}}=\sum_{l=0}^{\infty} \boldsymbol{h}_{l} \boldsymbol{\delta}_{n-l, 0}=\boldsymbol{h}_{n}
$$

which is why we called these coefficients h in the first place!
The IR of an MA filter is nonzero for a finite number (L) of times and so MA filters are called Finite Impulse Response filters
The IR of AR or general ARMA filters
is nonzero for an infinite number of times (due to the recursion!) and so they are called Infinite Impulse Response filters

IR for MA filter

We can see why MA filters are FIR by the following graphical construction

IR for MA filter

We can see why MA filters are FIR by the following graphical construction

IR for MA filter

We can see why MA filters are FIR by the following graphical construction

IR for MA filter

We can see why MA filters are FIR by the following graphical construction

IR for MA filter

We can see why MA filters are FIR by the following graphical construction

You see why we chose this direction? convolution, not correlation!

IR solves the easy SI problem!

It is enough to input one simple signal to know the system !

- if we know the response of a filter to the UI we know its response to any SUI because of time invariance (just shift the impulse!)

- if we know the response of a filter to all SUls
we know its response to any weighted combination of SUls because of linearity (add the weighted outputs!)
- any input signal \mathbf{x}
can be written as the weighted combination of SUls since SUls are a basis

Easy problem Frequency Response (FR)

We have found one solution to the easy SI problem
Another common choice of input are the sinusoids

$$
x_{n}=\sin (k n)
$$

But we need to enter all possible sinusoids ($k=0,1, \ldots$)
However, from the filter law we know that
sinusoids are eigensignals of filters
the response to a sinusoid of frequency $\omega: \sin (\omega \mathrm{n})$
is a sinusoid of frequency ω (or zero output)

$$
y_{n}=A_{\omega} \sin \left(\omega n+\phi_{\omega}\right)
$$

So we input all possible sinusoids
but record only the frequency response $F R$

- the gain A_{k}

- the phase shift ϕ_{k}

FR solves the easy SI problem!

It is enough to input these sinusoids to know the system !

- if we know the response of a filter to $x_{n}=\sin (k n)$
we know its response to $x_{n}=\sin (k n+\phi)$
because of time invariance
- if we know the response of a filter to arbitrary sinusoids we know its response to weighted combination of them because of linearity (add the weighted outputs!)
- any input signal \mathbf{x}
can be written as the weighted combination of sinusoids since they are the Fourier basis

Does this make sense?

In the first solution we only needed one trial we entered one input the UI and recorded the impulse response h_{n}
In the second solution we had to enter many inputs - all the sinusoids!
Does this make sense?
For the impulse response we needed to record many time values for the frequency response
we only needed one complex number for each input
For example, assume a signal with N values (in time/frequency domain) and an MA with N coefficients

- for h_{n} we need to record N values
- for $\mathrm{H}_{\mathbf{k}}$ we need to record N coefficients : 1 for each frequency

Why do you think we call the IR \mathbf{h} and the FR \mathbf{H} ?

The easiest hard problem

The hard problem is so hard
that we will start with a simple case

- Assume an MA filter with 3 coefficients
$y_{n}=\sum_{l=0}^{L=2} a_{l} \boldsymbol{x}_{n-l}=\mathrm{a}_{0} \mathrm{x}_{\mathrm{n}}+\mathrm{a}_{1} \mathrm{x}_{\mathrm{n}-1}+\mathrm{a}_{2} \mathrm{x}_{\mathrm{n}-2}$
- We further assume that the input was zero until time $n=0$ (we can always take the time the signal starts to be $\mathrm{n}=0$...)

$$
\text { so } X_{n<0}=0
$$

We need to find 3 unknowns $-a_{0}, a_{1}$, and a_{2} so we will need three equations to solve

The easiest hard problem (cont.)

First let's write the equation for $\mathrm{n}=0$

$$
y_{0}=a_{0} x_{0}+a_{1} x_{-1}+a_{2} x_{-2}=a_{0} x_{0}
$$

Since $x_{0} \neq 0$ we can divide to find $a_{0}=y_{0} / x_{0}$
Next we write the equation for $n=1$

$$
y_{1}=a_{0} x_{1}+a_{1} x_{0}+a_{2} x_{-1}=a_{0} x_{1}+a_{1} x_{0}
$$

What do we already know?

$$
y_{1}=a_{0} x_{1}+a_{1} x_{0} \text { so } \quad a_{1}=\left(y_{1}-a_{0} x_{1}\right) / x_{0}
$$

which is OK since $x_{0} \neq 0$
Finally we write the equation for $n=2$

$$
\begin{gathered}
y_{2}=a_{0} x_{2}+a_{1} x_{1}+a_{2} x_{0} \\
\text { so } a_{2}=\left(y_{2}-a_{0} x_{2}-a_{1} x_{1}\right) / x_{0} \text { which is OK since } x_{0} \neq 0
\end{gathered}
$$

The easiest hard problem - matrix form

First can rewrite the three equations

$$
\begin{aligned}
& y_{0}=a_{0} x_{0} \\
& y_{1}=a_{0} x_{1}+a_{1} x_{0} \\
& y_{2}=a_{0} x_{2}+a_{1} x_{1}+a_{2} x_{0}
\end{aligned}
$$

in matrix format (with the coefficient as the vector)

$$
\left(\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2}
\end{array}\right)=\left(\begin{array}{ccc}
x_{0} & 0 & 0 \\
x_{1} & x_{0} & 0 \\
x_{2} & x_{1} & x_{0}
\end{array}\right)\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right)
$$

which can be solved by inverting the matrix

$$
\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right)=\left(\begin{array}{ccc}
x_{0} & 0 & 0 \\
x_{1} & x_{0} & 0 \\
x_{2} & x_{1} & x_{0}
\end{array}\right)^{-1}\left(\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2}
\end{array}\right)
$$

The easiest hard problem - some more

The matrix to invert $\left(\begin{array}{ccc}x_{0} & 0 & 0 \\ x_{1} & x_{0} & 0 \\ x_{2} & x_{1} & x_{0}\end{array}\right)$ is lower triangular
which is why it was so easy to solve In fact, our solution was the straightforward inversion!

But this matrix has another characteristic
it has Toeplitz (Töplitz) form

- the same value along diagonals

A slightly harder problem

- Assume an MA filter with 3 coefficients

$$
\mathrm{y}_{\mathrm{n}}=\sum_{l=0}^{L=2} a_{l} x_{n-l}=\mathrm{a}_{0} \mathrm{x}_{\mathrm{n}}+\mathrm{a}_{1} \mathrm{x}_{\mathrm{n}-1}+\mathrm{a}_{2} \mathrm{x}_{\mathrm{n}-2}
$$

- but the input does not start nonzero

We still need to find the 3 unknowns - a_{0}, a_{1}, and a_{2} so we will need three equations to solve

So pick any n (there is nothing special about any time) and write three consecutive equations

$$
\begin{aligned}
& y_{n}=a_{0} x_{n}+a_{1} x_{n-1}+a_{2} x_{n-2} \\
& y_{n+1}=a_{0} x_{n+1}+a_{1} x_{n}+a_{2} x_{n-1} \\
& y_{n+2}=a_{0} x_{n+2}+a_{1} x_{n+1}+a_{2} x_{n}
\end{aligned}
$$

Note that we need to observe 5 consecutive times

$$
\begin{array}{lll}
n-2 & x_{n-2} & n-1 \\
n+1 & x_{n-1} & n x_{n+1} \text { and } y_{n} \\
\text { and } y_{n+1} & \quad & n+2 x_{n+2}
\end{array}
$$

Solving the slightly harder problem

Let's jump directly to the matrix form

$$
\left(\begin{array}{c}
y_{n} \\
y_{n+1} \\
y_{n+2}
\end{array}\right)=\left(\begin{array}{ccc}
x_{n} & x_{n-1} & x_{n-2} \\
x_{n+1} & x_{n} & x_{n-1} \\
x_{n+2} & x_{n+1} & x_{n}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right)
$$

So, here is yet another connection
between convolution and (matrix) multiplication
The solution is once again to invert the matrix but this time it is not lower triangular but it is still Toeplitz

Inverting a general matrix is $\mathrm{O}\left(\mathrm{N}^{3}\right)$ and may be unstable (well actually $\mathrm{O}\left(\mathrm{n}^{\log 2(7)}\right)=\mathrm{O}\left(\mathrm{n}^{2.807}\right)$ or even less)
but inverting a Toeplitz matrix takes only $\mathrm{O}\left(\mathrm{N}^{2}\right)$ and is always stable (Levinson Durbin algorithm)

BTW - another connection

We wanted to solve for the coefficients and thus put them into a vector
In other circumstances we may want to rewrite the equations

$$
\begin{aligned}
& y_{n}=a_{0} x_{n}+a_{1} x_{n-1}+a_{2} x_{n-2} \\
& y_{n+1}=a_{0} x_{n+1}+a_{1} x_{n}+a_{2} x_{n-1} \\
& y_{n+2}=a_{0} x_{n+2}+a_{1} x_{n+1}+a_{2} x_{n}
\end{aligned}
$$

in another form

$$
\left(\begin{array}{c}
y_{n} \\
y_{n+1} \\
y_{n+2}
\end{array}\right)=\left(\begin{array}{ccccc}
a_{2} & a_{1} & a_{0} & 0 & 0 \\
0 & a_{2} & a_{1} & a_{0} & 0 \\
0 & 0 & a_{2} & a_{1} & a_{0}
\end{array}\right)
$$

Here the matrix is Toeplitz but not square!
This is yet another connection between convolution and multiplication by a Toeplitz matrix!

Wiener-Hopf equations

The equations we found

$$
\left(\begin{array}{c}
y_{n} \\
y_{n+1} \\
y_{n+2}
\end{array}\right)=\left(\begin{array}{ccc}
x_{n} & x_{n-1} & x_{n-2} \\
x_{n+1} & x_{n} & x_{n-1} \\
x_{n+2} & x_{n+1} & x_{n}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right)
$$

are called the Wiener-Hopf equations

However, you will never see them written in this simple way!
That is because of noise!
If we solve them twice for different \mathbf{n} we won't get exactly the same answer
So you might solve many times and average the solutions but that would require many matrix inversions and is not even the right thing to do!

What's the right way?

Let's go back to the original MA equation

$$
\mathrm{y}_{\mathrm{n}}=\sum_{l=0}^{L} a_{l} x_{n-l}
$$

Multiple both sides by $\mathrm{x}_{\mathrm{n}+\mathrm{j}}$ and sum over all n

$$
\sum_{n} \boldsymbol{y}_{n} \boldsymbol{x}_{n+j}=\sum_{n} \sum_{l} \boldsymbol{a}_{l} \boldsymbol{x}_{n-l} \boldsymbol{x}_{n+j}
$$

Remember that we mentioned the correlation of x and y ?

$$
C_{x y}(j)=\sum_{n} \boldsymbol{x}_{n} \boldsymbol{y}_{n+j}
$$

So the Wiener-Hopf equations can be written:

$$
C_{y x}(j)=\sum_{l} \boldsymbol{a}_{l} C_{x x}(j-l)
$$

This has the same form, but need be solved only once!

What about AR filters?

Now let's assume that the unknown system is an AR filter with 3 coefficients
$\mathbf{y}_{\mathrm{n}}=\mathrm{x}_{\mathrm{n}}+\sum_{m=1}^{M=3} \boldsymbol{b}_{\boldsymbol{m}} \boldsymbol{y}_{n-m}=\mathrm{x}_{\mathrm{n}}+\mathrm{b}_{1} \mathrm{y}_{\mathrm{n}-1}+\mathrm{b}_{2} \mathrm{y}_{\mathrm{n}-2}+\mathrm{b}_{3} \mathrm{y}_{\mathrm{n}-3}$
Once again we have three coefficients to find so we need to write 3 equations

$$
\begin{aligned}
y_{n} & =x_{n}+b_{1} y_{n-1}+b_{2} y_{n-2}+b_{3} y_{n-3} \\
y_{n+1} & =x_{n+1}+b_{1} y_{n}+b_{2} y_{n-1}+b_{3} y_{n-2} \\
y_{n+2} & =x_{n+2}+b_{1} y_{n+1}+b_{2} y_{n}+b_{3} y_{n-1}
\end{aligned}
$$

Note that we need to observe 6 times -6 ys and 3 xs

Yule-Walker equations

Let's write the equations in matrix form

$$
\begin{aligned}
& \left(\begin{array}{c}
y_{n} \\
y_{n+1} \\
y_{n+2}
\end{array}\right)=\left(\begin{array}{c}
x_{n} \\
x_{n+1} \\
x_{n+2}
\end{array}\right)+\left(\begin{array}{ccc}
y_{n-1} & y_{n-2} & y_{n-3} \\
y_{n} & y_{n-1} & y_{n-2} \\
y_{n+1} & y_{n} & y_{n-1}
\end{array}\right)\left(\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) \\
& \text { vextor } \rightarrow \underline{y}=\underline{x}+{\underline{\underline{y}} \underline{\underline{b}}_{\text {marrix }}}^{\text {so }} \underline{\underline{b}}=\underline{\underline{y^{-1}}} \underline{(y-x)}
\end{aligned}
$$

Your cellphone solves YW equations thousands of times per second!

What is the right way?

However, you will never see the Yule Walker equations written in this simple way because of noise Instead take the original AR equation (without the x)

$$
\mathbf{y}_{\mathrm{n}}=\sum_{m=1}^{M} \boldsymbol{b}_{m} \boldsymbol{y}_{n-m}
$$

Multiply both sides by $\mathrm{y}_{\mathrm{n}+\mathrm{j}}$ and sum over all n

$$
\sum_{n} y_{n+j} y_{n}=\sum_{n} \sum_{m} b_{m} y_{n-m} y_{n+j}
$$

which can be written we can reverse the summation order!

$$
C_{y y}(j)=\sum_{m} \boldsymbol{b}_{m} C_{y y}(j-m)
$$

What about (full) ARMA filters?

We can repeat the entire exercise for general ARMA filters

$$
y_{n}=\sum_{n=0}^{L-1} a_{l} x_{n-l}+\sum_{m=1}^{M} b_{m} y_{n-m}
$$

We have $\mathrm{L}+\mathrm{M}$ variables and so have to write $\mathrm{L}+\mathrm{M}$ equations
But the matrix will not turn out to be Toeplitz and thus the equations will be difficult to solve!

So, in DSP we try to make every system identification problem either MA or AR!

Another way to solve

So far we have worked in the time domain
Why can't we use the filter law directly?
Since $\mathbf{Y}_{\mathbf{k}}=\mathbf{H}_{\mathbf{k}} \mathbf{X}_{\mathbf{k}}$ we can divide to find $\mathbf{H}_{\mathbf{k}}=\mathbf{Y}_{\mathbf{k}} / \mathbf{X}_{\mathbf{k}}$ and knowing H_{k} determines the filter!
The problem is that X_{k} can be zero!
So, instead we will use the z transform and at last prove the filter law!

We will start with
the infinite convolution form of the ARMA filter

$$
y_{n}=\sum_{k=-\infty}^{\infty} h_{k} x_{n-k}
$$

Using z transform

$$
\begin{aligned}
& =\sum_{k=-\infty}^{\infty} h_{k} \sum_{n=-\infty}^{\infty} x_{n-k} z^{-n} \\
& =\sum_{k=-\infty}^{\infty} h_{k} z^{-k} \sum_{m=-\infty}^{\infty} x_{m} z^{-m} \\
& =\begin{array}{ll}
H(z) & X(z)
\end{array}
\end{aligned}
$$

The transfer function

So we have found that $Y(z)=H(z) X(z)$
$H(z)$ is called the transfer function
We defined $\mathrm{H}(\mathrm{z})=\sum_{n=-\infty}^{\infty} h_{n} z^{-n}$
which means that $\mathrm{H}(\mathrm{z})$ is the zT of the impulse response
In particular, if we look only on the unit circle we find $Y(\omega)=H(\omega) X(\omega)$
and on the digital points $Y_{\mathbf{k}}=H_{\mathbf{k}} X_{\mathbf{k}}$
Which is precisely the filter law

Furthermore, we see that the frequency response H_{k} is the FT of the impulse response h_{n}
This explains why we called them \mathbf{h} and \mathbf{H} !

Let's do that again!

To find out even more We will do the same kind of calculation but this time start with the symmetric form of the ARMA filter

$$
\sum_{m=0}^{M} \beta_{m} y_{n-m}=\sum_{l=0}^{L} \alpha_{l} x_{n-l} \quad \text { remember } \beta_{0}=1
$$

Now we take the zT of both sides

$$
\sum_{n=-\infty}^{\infty}\left(\sum_{m=0}^{M} \beta_{m} y_{n-m}\right) z^{-n}=\sum_{n=-\infty}^{\infty}\left(\sum_{l=0}^{L} \alpha_{l} x_{n-l}\right) z^{-n}
$$

and do our usual tricks to get

$$
\begin{array}{rrrr}
\sum_{m=0}^{M} \beta_{m} z^{-m} \sum_{n=-\infty}^{\infty} y_{n} z^{-n} & =\sum_{l=0}^{L} \alpha_{l} z^{-l} \sum_{n=-\infty}^{\infty} x_{n} z^{-n} \\
B(z) & Y(z) & =\quad A(z) & X(z)
\end{array}
$$

The entire calculation

$$
\begin{aligned}
\sum_{n=-\infty}^{\infty}\left(\sum_{m=0}^{M} \beta_{m} y_{n-m}\right) z^{-n} & =\sum_{n=-\infty}^{\infty}\left(\sum_{l=0}^{L} \alpha_{l} x_{n-l}\right) z^{-n} \\
\sum_{n=-\infty}^{\infty} \sum_{m=0}^{M} \beta_{m} y_{n-m} z^{-n} & =\sum_{n=-\infty}^{\infty} \sum_{l=0}^{L} \alpha_{l} x_{n-l} z^{-n} \\
\sum_{n=-\infty}^{\infty} \sum_{m=0}^{M} \beta_{m} y_{n-m} z^{-n} & =\sum_{n=-\infty}^{\infty} \sum_{l=0}^{L} \alpha_{l} x_{n-l} z^{-n} \\
\sum_{m=0}^{M} \beta_{m} \sum_{n=-\infty}^{\infty} y_{n-m} z^{-n} & =\sum_{l=0}^{L} \alpha_{l} \sum_{n=-\infty}^{\infty} x_{n-l} z^{-n} \\
\sum_{m=0}^{M} \beta_{m} z^{-m} \sum_{n=-\infty}^{\infty} y_{n-m} z^{-(n-m)} & =\sum_{l=0}^{L} \alpha_{l} z^{-l} \sum_{n=-\infty}^{\infty} x_{n-l} z^{-(n-l)} \\
M & =\sum_{l=0}^{L} \alpha_{l} z^{-l} \sum_{n=-\infty}^{\infty} x_{n} z^{-n} \\
\sum_{m=0}^{M} \beta_{m} z^{-m} \sum_{n=-\infty}^{\infty} y_{n} z^{-n} & =A_{n}(z)
\end{aligned}
$$

$\mathrm{H}(\mathrm{z})$ is a rational function

so
$B(z) Y(z)=A(z) X(z)$
$Y(z)=A(z) / B(z) X(z)$
but we know $Y(z)=H(z) X(z)$
so
$H(z)=A(z) / B(z)$
$A(z)$ and $B(z)$ are polynomials in z^{-1}
By multiplying by $z^{\mathbf{L}}$ and $z^{\mathbf{M}}$ respectively we can make them into polynomials in z
This means that the transfer function is a rational function that is, the ratio of two polynomials in z

In complex function theory

- the roots of the numerator are called zeros of $\mathrm{H}(\mathrm{z})$
- the roots of the denominator are called poles of $\mathrm{H}(\mathrm{z})$

Poles and zeros

From the fundamental theory of algebra we know that every polynomial of degree n has n roots over the complex numbers

Hence we can write

$$
\begin{aligned}
A(z) & =\sum_{l=0}^{L} \alpha_{l} z^{l}=\prod_{l=0}^{L}\left(z-\zeta_{l}\right) \\
B(z) & =\sum_{m=0}^{M} \beta_{m} z^{m}=\prod_{m=0}^{M}\left(z-\pi_{m}\right)
\end{aligned}
$$

where we see the zeros and poles of the transfer function
An important theorem in complex functions states
that the zeros and poles determine a rational function to within a multiplicative constant

So the poles and zeros of the transfer function determine the filter to within an overall gain
In diagrams zeros are shown as \bullet and poles as \mathbf{x}

Special cases

If the ARMA form is actually an MA filter then there are a coefficients but all the β are zero except $\beta_{0}=1$
So $H(z)=A(z) / B(z)=A(z)$ has zeros but no poles!

If the ARMA form is actually an AR filter
then there are β coefficients
but all the α are zero except $\alpha_{0}=1$
So $H(z)=A(z) / B(z)=1 / B(z)$ has poles but no zeros
If the ARMA filter is general (not MA or AR)
then it has both poles and zeros

Summary of filter names

FIR	MA	all zeros
IIR	AR	all poles
	ARMA	zeros and poles

What do zeros/poles mean?

Since $Y(z)=H(z) X(z)$, if the input is $x_{n}=z^{n}$ the output is $y_{n}=H(z) z^{n}$

- A zero at z means that if the input is $x_{n}=z^{n}$ the output is zero!
- A zero on the unit circle means an input sinusoid $x_{n}=\sin (\omega n)$ for which the output is zero
- A pole means that if the input is that signal the output explodes!
- A pole on the unit circle means an input sinusoid $x_{n}=\sin (\omega n)$ for which the output explodes

Why do zeros and poles not on the real axis come in pairs?
Why don't we allow poles on or outside the unit circle while zeros can be anywhere?

Are zeros important?

The filter law $Y(\omega)=H(\omega) X(\omega)$ tells us that no new frequencies are created but frequencies can disappear (when $\mathrm{H}(\omega)=0$) !
We call a frequency that disappears a zero of the filter and more generally a signal z^{n} that disappears
We already saw examples of MA filters with zeros!

- $y_{n}=x_{n}-x_{n-1}$ (first finite difference) has a zero at DC
- $y_{n}=x_{n}+x_{n-1}$ has a zero at Nyquist
- $y_{n}=x_{n}+x_{n-2}$ has a zero at half Nyquist ($\omega=\pi / 2$)
- Bandstop and notch filters are used because of their zeros

Are poles important?

The filter law in the z plane $Y(z)=H(z) X(z)$ tells us that no new z^{n} signals are created but these signals can explode (when $H(\omega)=\infty$)!
We call a z^{n} signal that explodes a pole of the filter
We already saw examples of AR filters with poles!

- $y_{n}=x_{n}+y_{n-1}$ (accumulator) has a pole at DC
- $y_{n}=x_{n}-y_{n-1}$ has a pole at Nyquist
- $y_{n}=x_{n}-y_{n-2}$ has a pole at half Nyquist $(\omega=\pi / 2)$
- we don't want poles on the unit circle (for sinusoids!) but sinusoids that are amplified require nearby poles

Designing filters by poles and zeros

DSP experts sometimes design filters directly using poles and zeros! What do the following pole/zero diagrams mean?

How to find the transfer function?

If you are given the filter in the time domain
it is easy to find its transfer function and poles/zeros
by the following steps:

1. Move all the $\mathbf{y s}$ to one side and $\mathbf{x s}$ to the other to create the symmetric form
2. Write the equation in terms of signals using delay operators
3. Take the $z T$ of both sides using our rule $z T\left(\hat{\mathbf{Z}}^{-1} x\right)=z^{-1} z T(x)$
4. Divide leaving $Y(z)$ on the LHS
5. Change numerator and denominator into polynomials (discard z^{M})
6. Find the roots of the polynomials

Summary - filters

FIR = MA = all zero
IIR: AR = all pole
ARMA = zeros and poles
The following contain everything about the filter (are can predict the output given the input)

- \mathbf{a} and \mathbf{b} coefficients
- α and β coefficients
- impulse response \mathbf{h}_{n}
- frequency response $\mathbf{H}(\omega)$
- transfer function $\mathbf{H}(\mathbf{z})$
- pole-zero diagram + overall gain

How do we convert between them?

Conversions

from \downarrow	$\begin{gathered} \text { a, b } \\ \text { coefficients } \end{gathered}$	$\begin{gathered} \alpha, \beta \\ \text { coefficients } \end{gathered}$	impulse response	frequency response	transfer function	gain and pole-zero diagram
$\begin{gathered} \mathbf{a}, \mathbf{b} \\ \text { coefficients } \end{gathered}$	identity	subtraction of y terms	$\begin{aligned} & \text { MA: } \mathrm{h}=\mathrm{a} \\ & \text { AR + ARMA: } \\ & \text { recursion } \end{aligned}$	substitute $x=e^{i k n}$	$\begin{aligned} & \text { write using } \\ & z^{-1} \end{aligned}$ and extract	through transfer function
$\begin{gathered} \alpha, \beta \\ \text { coefficients } \end{gathered}$	addition of y terms	identity	same as a,b	same as a,b	same as a,b	same as a,b
impulse response	MA: $a=h$ ARMA: recursion	through a,b	identity	DFT	2T	through transfer function
frequency response	through IR or transfer function	same as a,b	iDFT	identity	analytic continuation	through transfer function
transfer function	through α, β	$\begin{gathered} \mathrm{B}(\mathrm{z}) \mathrm{Y}(\mathrm{z}) \\ = \\ \mathrm{A}(\mathrm{z}) \mathrm{X}(\mathrm{z}) \end{gathered}$	izT	substitute $z=e^{i \omega}$	identity	find roots
gain and pole-zero diagram	through transfer function	through transfer function	through transfer function	substitution	multiply terms to get polynomial	identity

Exercise - causal MA

$y_{n}=x_{n}+x_{n-1}$

- this filter is causal MA
- we can immediately guess that it is low-pass since
- it averages!

$-\mathrm{H}(\mathrm{DC})=2 \quad$ (from $\mathrm{H}=1+1$) - gain=2!
-H (Nyquist) $=0$ (from $\mathrm{H}=1+1$)
- impulse response is 1,1
- frequency response: $\mathrm{H}(\omega) \mathrm{e}^{\mathrm{i} \omega n}=\mathrm{e}^{\mathrm{i} \omega n}+\mathrm{e}^{\mathrm{i} \omega(\mathrm{n}-1)}$

so $H(\omega)=1+e^{-i \omega}=e^{-i \omega / 2}\left(e^{+i \omega / 2}+e^{-i \omega / 2}\right)=$ phase ${ }^{*} 2 \cos (\omega / 2)$ causality results in phase!
- transfer function

$$
y=\left(1+\hat{z}^{-1}\right) x \text { so } H(z)=1+1 / z \rightarrow z+1
$$

Try $y_{n}=x_{n}-x_{n-1}$

Exercise -noncausal MA

$y_{n}=x_{n-1}+x_{n+1}$

- this filter is noncausal MA
- we can immediately guess that it is band-stop since
$-H(D C)=2 \quad$ (from $H=1+1)$

-H (Nyquist) $=2$ (from $\mathrm{H}=1+1$)
$-\mathrm{H}(\mathrm{mid})=0$ (use $\mathrm{x}=-10+10$)
- impulse response is $1,0,1$
- frequency response: $\mathrm{H}(\omega) \mathrm{e}^{\mathrm{i} \omega \mathrm{n}}=\mathrm{e}^{\mathrm{i} \omega(n-1)}+\mathrm{e}^{\mathrm{i} \omega(n+1)}$

$$
\text { so } H(\omega)=e^{i \omega}+e^{-i \omega}=2 \cos (\omega)
$$

- transfer function

$$
y=\left(\hat{z}^{-1}+\hat{z}^{+1}\right) \times \text { so } H(z)=z+1 / z=z^{2}+1=(z+i)(z-i)
$$

Why are there 2 zeros?

Exercise - AR

$y_{n}=x_{n}+1 / 2 y_{n-1}$

- this filter is causal AR

- we can immediately guess that it is LP since
$-H(D C)=2 \quad$ (from $H=1+1 / 2 H)$
-H (Nyquist) $=2 / 3$ (from $\mathrm{H}=1-1 / 2 \mathrm{H}$)
- impulse response is $1,1 / 2,1 / 4,1 / 8, \ldots$
- frequency response: $\mathrm{H}(\omega) \mathrm{e}^{\mathrm{i} \omega \mathrm{n}}=\mathrm{e}^{\mathrm{i} \omega \mathrm{n}}+1 / 2 \mathrm{H}(\omega) \mathrm{e}^{\mathrm{i} \omega(n-1)}$

$$
\begin{aligned}
& \text { so } H(\omega)=1 /\left(1-1 / 2 e^{-\mathrm{i} \omega}\right)=2 /\left(2-\mathrm{e}^{-\mathrm{i} \omega}\right) \\
& |H(\omega)|^{2}=4 /(5-4 \cos (\omega))
\end{aligned}
$$

- transfer function

$$
\left(1-1 / 2 \hat{z}^{-1}\right) y=x
$$

$$
\text { so } H(z)=1 /\left(1-1 / 2 z^{-1}\right)=1 /(z-1 / 2)
$$

i.e., 1 pole at $1 / 2$

Exercise - ARMA

$y_{n}=x_{n}-\frac{3}{2} x_{n-1}+\frac{1}{2} x_{n-2}-y_{n-1}-\frac{1}{2} y_{n-2}$

- this filter is causal ARMA
- impulse response $1,-\frac{5}{2},+\frac{5}{2},-\frac{5}{4}, 0, \ldots$
- at $D C H(D C)=1-\frac{3}{2}+\frac{1}{2}-H(D C)-\frac{1}{2} H(D C)$ so $H(D C)=0$
- at Nyquist $\mathrm{H}(\mathrm{Nyq})=1+\frac{3}{2}+\frac{1}{2}+\mathrm{H}(\mathrm{Nyq})-\frac{1}{2} \mathrm{H}(\mathrm{Nyq})$ so $\mathrm{H}(\mathrm{Nyq})=6$
- frequency response
$H(\omega) e^{i \omega n}=e^{i \omega n}-\frac{3}{2} e^{i \omega(n-1)}+\frac{1}{2} e^{i \omega(n-2)}-H(\omega) e^{i \omega(n-1)}-\frac{1}{2} H(\omega) e^{i \omega(n-2)}$
$H(\omega)=\frac{1-\frac{3}{2} e^{i \omega}+\frac{1}{2} e^{2 i \omega}}{1+e^{i \omega}+\frac{1}{2} e^{2 i \omega}}=\frac{-\frac{3}{2}+\cos (\boldsymbol{\omega})+\frac{1}{2} e^{i \omega}}{1+\cos (\boldsymbol{\omega})+\frac{1}{2} e^{i \omega}}$
$|H(\omega)|^{2}=\frac{\frac{10}{4}-\frac{9}{2} \cos (\omega)+2 \cos ^{2}(\omega)}{\frac{5}{4}+3 \cos (\omega)+2 \cos ^{2}(\omega)}$

Exercise - ARMA (cont.)

$$
y_{n}=x_{n}-\frac{3}{2} x_{n-1}+\frac{1}{2} x_{n-2}-y_{n-1}-\frac{1}{2} y_{n-2}
$$

1. $y_{n}+y_{n-1}+\frac{1}{2} y_{n-2}=x_{n}-\frac{3}{2} x_{n-1}+\frac{1}{2} x_{n-2}$
2. $\left(1+\hat{z}^{-1}+\frac{1}{2} \hat{z}^{-2}\right) y=\left(1-\frac{3}{2} \hat{z}^{-1}+\frac{1}{2} \hat{z}^{-2}\right) x$
3. $\left(1+z^{-1}+\frac{1}{2} z^{-2}\right) Y(z)=\left(1-\frac{3}{2} z^{-1}+\frac{1}{2} z^{-2}\right) X(z)$
4. $\quad Y(z)=\frac{\left(1-\frac{3}{2} z^{-1}+\frac{1}{2} z^{-2}\right)}{\left(1+z^{-1}+\frac{1}{2} z^{-2}\right)} X(z)$

$$
H(z)=\frac{\left(1-\frac{3}{2} z^{-1}+\frac{1}{2} z^{-2}\right)}{\left(1+z^{-1}+\frac{1}{2} z^{-2}\right)}=\frac{\left(z^{2}-\frac{3}{2} z+\frac{1}{2}\right)}{\left(z^{2}+z+\frac{1}{2}\right)}=\frac{(z-1)\left(z-\frac{1}{2}\right)}{\left(z+\frac{1}{2}(1+\mathrm{i})\right)\left(z+\frac{1}{2}(1-\mathrm{i})\right)}
$$

5.
6.

