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Systems

A signal processing system has signals as inputs and outputs

The most common type of system has a single input and output

A system is called causal

if yn depends on xn-m for m 0 but not on xn+m

A system is called linear (note - does not mean yn = axn + b !)

if x1 → y1 and x2 → y2  then (ax1+ bx2)→ (ay1+ by2)

A system is called time invariant if it has no internal clock    
if x → y   then Ƹ𝑧𝑛 x  → Ƹ𝑧𝑛 y

A system that is both linear and time invariant is called a filter

0 or more signals as inputs 1 or more signals as outputs

1 signal as input 1 signal as output



Exercise time!
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x and y must be signals!



Example systems

◼ Identity system  yn = xn

◼ Amplifier (gain) yn = g xn

◼ Saturator yn = sign( xn ) 

What does this do to a sinusoid ?

How is it related to the amplifier ?

Why is DSP better than electronics ? (see next slide)

◼ Time by time functions yn = f(xn)

These are not interesting since they don’t involve time

◼ Delay y = Ƹ𝑧−1x (i.e., yn = xn-1 )

◼ First time difference y = ෠∆ x (i.e., yn = xn - xn-1 )

◼ Smoother yn = 
1

4
xn-1  + 

1

2
xn + 

1

4
xn+1   (not causal!) 

How can we make it causal?
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DSP is better than electronics

Analog electronic amplifiers have

◼ maximum output voltage (power supply voltage)

◼ cut-in voltage

◼ nonlinearities

In DSP we can multiply exactly

(we’ll see later why overflow/underflow won’t concern us)
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Filters

Filters have a property in the frequency domain (the filter law)

Y() = H() X()            Yk = Hk Xk

In particular, if the input has no energy at frequency f

then the output also has no energy at frequency f
(what you get out of it depends on what you put into it)

This is the reason to call it a filter

just like a colored light filter (or a coffee filter …)

Filters are used for many purposes, for example
◼ filtering out noise or narrowband interference
◼ separating two signals
◼ integrating and differentiating (why are these filters???)
◼ emphasizing or de-emphasizing frequency ranges

Why is the amplifier a filter? (explain why linear and TI, and in frequency domains)

What is H() for the delay system ?



How does the filter law work?
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H(ω) is called the frequency response



Frequency response

In general H(ω) is a complex number 

◼ The absolute value is the gain 

how much the sinusoid is amplified or attenuated

◼ The phase is the phase shift

how much the sinusoid is delayed

H(ω) is a function of ω

a filter need not do the same thing to all frequencies!

Many time we use filters that are low-pass, high-pass, etc.

but not all filters are like that
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Types of filters

low pass
f

high pass
f

band pass
f

band stop
f

notch
f

multiband
f

realizable LP

When designing filters, we can specify :

• transition frequencies

• transition widths

• ripple in pass and stop bands

• linear phase (yes/no/approximate)

• computational complexity

• memory restrictions

What kind of analog filter is an anti-aliasing filter ?



Nonfilters

If a system is not linear it does not obey the filter law !

For example, yn = xn + ϵ xn
2 

if xn = sin(ωn) then yn = sin(ω n) + ϵ/2 - ϵ/2 cos(2ω n) 

So the input spectrum has 1 component

and the output spectrum has 3!

If a system is not time invariant it is not a filter!

For example, y(t) = ei Ω t x(t) 

if x(t) = ei ω t then y(t) = ei Ω t ei ω t = ei (Ω + ω) t

Why did we use complex exponentials here ?

What happens to a more general spectrum ?
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Question 1

To understand our first kind of filter we’ll look at an example

We know that a signal is DC (a constant sn = k)

but only see a noisy version xn = sn + vn

where the noise signal vn is DC-free (zero average)

How do we discover k (recover sn) ?

We average over as much time as we can

k = < xn > = < sn + vn > = < sn > + < vn > = < sn > + 0

In practice, we take N samples

k = 
1

𝑁
σ𝑛=0
𝑁−1 xn
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Question 2

We know that a signal sn changes very slowly 

(has only low frequencies in its spectrum)

but only see a noisy version xn = sn + vn

where the noise signal vn is DC-free (zero average)

How do we recover sn ?

We average over a window

long enough for the noise to average out

but not so long as to destroy the signal 

And then we move on to the next window

This is called Moving Average

yn = 
1

𝐿
σ
𝑙=−𝐿/2
+𝐿/2

𝑥𝑛−𝑙 ( if L is odd then 1/(L+1) )
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Question 3

The same, but signal sn doesn’t change so slowly 

(there are higher frequencies in its spectrum)

How do we recover sn ?

We perform a (generalized) Moving Average but with non-equal coefficients

yn = σ𝑙=𝑛−𝐿/2
𝑛+𝐿/2

𝑎𝑙 𝑥𝑛−𝑙 where σ𝑎𝑙= 1

For example, the smoother yn = 
1

4
xn-1  + 

1

2
xn + 

1

4
xn+1 

What coefficients return us to the original MA ?

Why do we often use triangular coefficients ?
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Question 4

What if the signal sn has a spectrum with all frequencies ?

We can still perform Moving Average 

but need to find the coefficients based on the frequency domain

such that we allow the signal to pass

but block as much noise as possible

This will only work if MA is a filter!
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MA is always a filter

Let’s check that Moving Average is a filter (linear and time invariant)

LINEARITY

If we multiply the input by a gain g

yn
’ = σ𝑎𝑙 𝑔𝑥𝑛−𝑙 = g σ𝑎𝑙 𝑥𝑛−𝑙 = g yn

If we add two inputs u and v which give outputs x and y

σ𝑎𝑙(𝑢 + 𝑣)𝑛−𝑙=  +σ𝑎𝑙 𝑢𝑛−𝑙 + σ𝑎𝑙 𝑣𝑛−𝑙 = xn + yn

TIME INVARIANCE

If we shift the input signal by m times (m positive or negative)

and the coefficients don’t change!

yn
’ = σ𝑎𝑙 𝑥 𝑛+𝑚 −𝑙 = (σ𝑎𝑙 𝑥𝑗−𝑙 ) 𝑗=𝑛+𝑚

= yn+m

Note that sometimes it is useful to have coefficients 

that change slowly over time (to adapt to changing circumstances)

In which case we almost have a filter …
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How to design a digital filter

20 years ago a large part of every DSP course was devoted to

how to design digital filters, i.e., given H(ω) how to find 𝑎𝑙

It is not enough to take the function H(ω) and perform an iFT

since in practice we would do this in the digital domain Sk

and we would have no control over what happens 

between the discrete frequency points

Here is the algorithm I recommend today ☺

◼ Google digital filter design software free download

◼ Download and install

◼ We’ll learn later about the different filter types

for now pick MA (also called FIR) filter

◼ Enter or draw the desired frequency characteristics

◼ Press compute coefficients

◼ View the spectrum

◼ Try it out
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Convolution

We saw that to filter out noise we used the signal processing system

yn = σ𝑙=𝑛−𝐿/2
𝑛+𝐿/2

𝑎𝑙 𝑥𝑛−𝑙
This is not causal, a similar causal filter is

yn = σ𝑙=0
𝐿−1𝑎𝑙 𝑥𝑛−𝑙

These forms of computation are called (finite) convolution

Note that convolution is the sum of products

with one index going up and the other index going down

in this way the sum of the 2 indexes stays the same (n)

We could have made both indexes go in the same direction

which is called correlation (used to compare 2 signals x and y)

Cx,y(m) = σ𝑥𝑙+𝑚 𝑦𝑙
Note that here the indexes both go up together!
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Convolution (2)

The word convolution was invented by Norbert Wiener

the inventor of cybernetics and DSP

Some DSP courses emphasize correlation 

and some emphasize convolution

the difference being relabeling the coefficients

We’ll use convolution

and we’ll see later why it is the best choice

Convolution (or correlation) appears in many DSP contexts

in fact, convolution is so important

that a processor that performs convolution optimally

is called a Digital Signal Processor
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Norbert Wiener



The echo cave 1

Here is another way convolution occurs

Consider shouting in a cave

the echo you hear is an attenuated copy 

of what you shouted a roundtrip time ago

yn = xn + a xn-l where l is the RTT
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The echo cave 2

But there can be many echoes 

yn = xn + a1 xn-1 + a2 xn-2 + a3 xn-3 + a4 xn-4 + …

If the longest possible echo returns after L times

yn = σ𝑙=0
𝐿−1 𝑎𝑙 𝑥𝑛−𝑙 (where 𝑎0 = 1, all other 0 ≤ |𝑎𝑙 | < 1)

convolution! What does 𝑎𝑙 < 0 mean ?
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You already know all about convolution!

LONG MULTIPLICATION B3  B2    B1 B0

*   A3 A2 A1 A0

-----------------------------------------------

A0B3 A0B2 A0B1   A0B0

A1B3 A1B2 A1B1    A1B0

A2B3 A2B2 A2B1   A2B0

A3B3 A3B2 A3B1    A3B0

------------------------------------------------------------------------------------

C3 = A0B3 + A1B2 + A2B1 + A3B0 

POLYNOMIAL MULTIPLICATION 

(a3 x
3 +a2 x

2 + a1 x + a0)
  (b3 x

3 +b2 x
2 + b1 x + b0)

  = 

   a3 b3 x
6 + … + (a3 b0 + a2 b1 + a1 b2 + a0 b3 ) x

3 + … + a0 b0 

What’s the connection between these?
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Picturing Convolution - 0

We chose the coefficients so that the indexes of a and x 
go in opposite directions

Note that the sum of the input indexes equals the output’s index !

x0 x1 x2 x3 x4 x5

a2 a1 a0

**

y0

*


−

=

−=
1

0

L

l

lnln xay

+
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Picturing Convolution - 1

We chose the coefficients so that the indexes of a and x 
go in opposite directions

Note that the sum of the input indexes equals the output’s index !

x0 x1 x2 x3 x4 x5

a2 a1

*

a0

* *

y0

**

y1

*


−

=

−=
1

0

L

l

lnln xay

+
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Picturing Convolution - 2

We chose the coefficients so that the indexes of a and x 
go in opposite directions

Note that the sum of the input indexes equals the output’s index !

x0 x1 x2 x3 x4 x5

a2

*

a1

* *

y0

a0

* **

y1

**

y2

*


−

=

−=
1

0

L

l

lnln xay

+
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Picturing Convolution - 3

We chose the coefficients so that the indexes of a and x 
go in opposite directions

Note that the sum of the input indexes equals the output’s index !

x0 x1 x2 x3 x4 x5

a2

*

a1

* *

y1

a0

* **

y2

**

y3

*

y0


−

=

−=
1

0

L

l

lnln xay

+
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Picturing Convolution - 4

We chose the coefficients so that the indexes of a and x 
go in opposite directions

Note that the sum of the input indexes equals the output’s index !

x0 x1 x2 x3 x4 x5

a2

*

a1

* *

y2

a0

* **

y3

**

y4

*

y0 y1


−

=

−=
1

0

L

l

lnln xay

+
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Picturing Convolution - 5

We chose the coefficients so that the indexes of a and x 
go in opposite directions

Note that the sum of the input indexes equals the output’s index !

x0 x1 x2 x3 x4 x5

a2

*

a1

* *

y3

a0

* **

y4

**

y5

*

y0 y1 y2


−

=

−=
1

0

L

l

lnln xay

+



Multiply and Accumulate (MAC)

How do we compute a convolution? (or a correlation?)

We iterate on a basic operation

y  y + ai * xj

Since this Multiplies a times x and then ACcumulates the answers

it is called a MAC

The MAC is the most basic computational block in DSP

Even computing energy can be done using (degenerate) MACs

E  E + xi * xi

Digital Signal Processors are optimized to compute MACs 
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In the frequency domain

Remember that in DSP 

we are interested in time and frequency domains

We know what an MA filter does in the time domain – convolution!

What does it do in the frequency domain?

What does an MA filter do to a sinusoid of arbitrary frequency ω ?

Here it is much easier to use complex exponentials than sines

So we ask, what does an MA filter do to xn = eiωn for arbitrary ω

We haven’t proven it yet (don’t worry – we will later)

but we said that for all filters Y(ω) = H(ω) X(ω)

That means that sinusoids are eigensignals of filters

MA-filter( eiωn ) = H(ω) eiωn

H(ω) is called the MA frequency response (0 ≤ ω ≤ π)

Why do we look at H(ω) for all ω instead of Hk ?

Why don’t we look at H(ω) for negative ω ?
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H(ω)

ω
0 π



Simple MA Frequency response

Let’s start with a simple noncausal 3-point MA 

yn = 
1

3
(xn-1  + xn + xn+1)

First let’s ask what this filter does to DC

remembering that for DC we can take xn = 1 (for all n)

yn = 
1

3
(1+1+1) = 1 (for all n)  so y is also DC (of course - it had to be!)

and H(DC) = yn / xn = 1

Next let’s ask what it does to Nyquist frequency (ω=π)

remembering that for Nyquist we take xn = … -1 +1 -1 +1 …

For even n:  yn = 
1

3
(-1+1-1)= -

1

3
and for odd n: yn = 

1

3
(+1-1+1)= 

1

3

So yn is … +
1

3
-
1

3
+ 

1

3
-
1

3
… which is also a Nyquist signal (it had to be!)

and H(ω) = yn / xn = -
1

3

We’ll only care about |H(ω)| for now, and |H(Nyquist)| = 
1

3
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Simple MA Frequency response (cont)

We have already found 2 points on the |H(ω)| plot

Now let’s find the rest!

We substitute xn = eiωn for arbitrary ω (0 ≤ ω ≤ π)

So yn is a constant times eiωn (of course - it had to be!)

and H(ω) = yn / xn = 
1

3
( 1 + 2cos(ω) )

Why isn’t this a nice enough low-pass filter?
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|H(ω)|

ω
0 π

1

1

3

|H(ω)|

ω
0 π

1

1

3



What about averaging more?

The frequency response of the more general averaging filter

is  

The more we average the more low-pass the filter becomes!

Why?
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Frequency response 2

As another example let’s look at the simple smoother filter 

yn = 
1

4
xn-1  + 

1

2
xn + 

1

4
xn+1 

For DC  yn = 
1

4
+ 
1

2
+ 

1

4
= 1 (for all n)  so H(DC) = yn / xn = 1

For Nyquist (even n) yn = 
1

4
(-1) + 

1

2
(+1) + 

1

4
(-1)= 0 so H(Nyquist) = 0

For general frequency we substitute  xn = eiωn

y is a sinusoid of the same frequency (of course – it has to be!)

and |H(ω)| = ½ ( 1 + 2cos(ω) )    Why is this better?
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|H(ω)|

ω
0 π

1



The first finite difference

Last example - the first finite difference in the frequency domain

y = ෠∆ x (i.e., yn = xn - xn-1 )

H(ω) eiωn = eiωn – eiω(n-1) so  H(ω) = 1- e-iω = e-iω/2 (eiω/2 - e-iω/2)

So |H(ω)| = 2 sin(ω/2)

This is a high-pass filter!

Why must it be high-pass?

Why is this complex (i.e., why does it have a phase shift)?

Y(J)S   DSP     Slide 34



Differentiation and Integration

What does the analog derivative look like in the frequency domain?

Here is it easy enough to use sines

The derivative of x(t) = sin(ωt) is y(t) = 
𝑑 𝑥(𝑡)

𝑑𝑡
= ω cos(ωt)

so | H(ω) | = ω and there is a 90 degree phase shift

What about the analog integral?

The integral of x(t) = sin(ωt) is y(t) = ׬𝑥 𝑡 𝑑𝑡 = – (1/ω) cos(ωt)

so | H(ω) | = 1/ω and there is a 90 degree phase shift

Y(J)S   DSP     Slide 35

|H(ω)|

ω
0
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Convolution and multiplication 

We already saw 2 connections between convolution

multiplying numbers and polynomials are convolutions

But we now understand a deeper connection

The filter law means that a convolution in the time domain 

yn = σ𝒍=𝟎
𝑳−𝟏𝒂𝒍 𝒙𝒏−𝒍

corresponds to a multiplication in the frequency domain Yk = Hk Xk

So, instead of convolving a and x in the time domain

we can move to the frequency domain and multiply 
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x0 x1 x2 x3 x4 x5

a2

*

a1

* *

y1

a0

* **

y2

**

y3

*

y0

X0 X1 X2 X3 X4 X5

A1

*

A2

* *

Y1

A3

* **

Y2

**

Y3

*

Y0

A0 A4 A5

Y4 Y5

* * *

a4 a3

* *

6*6 multiplications!

y5y4

many people even write  y = a*x

a5

* 6 multiplications

Why 6*6 and not 1+2+3+4+5+6 = 21 ?



The complexity of convolution

In DSP we use either the time domain or the frequency domain

whichever is better for the task at hand

To perform convolutions over N elements in the time domain

yn = σ𝒍=𝟎
𝑵−𝟏𝒂𝒍 𝒙𝒏−𝒍 for n = 0 … N-1

requires N times N multiplications (and another N*(N-1) additions)

and so the complexity is O(N2)

To perform the same thing in the frequency domain   Yk = Hk Xk

requires only N multiplications

But if we are working in the time domain

we need to first convert a and x into frequency domain A and X

and at the end convert Y back into time domain y

To do that we need to perform 2 DFTs Xk =  σ𝒏=𝟎
𝑵−𝟏𝑾𝑵

−𝒏𝒌 𝒙𝒏

and 1 iDFT yn =  
𝟏

𝑵
σ𝒌=𝟎
𝑵−𝟏𝑾𝑵

−𝒏𝒌 𝒀𝒌 each of which is O(N2) !

What we really need is a lower complexity DFT algorithm!
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AR

Computation of convolution is iteration

In CS there is a more general form of 'loop' - recursion

Example: let's average values of input signal up to present time

y0 = x0                                                      =        x0 

y1 = (x0 + x1) / 2                      =  1/2 x1 + 1/2 y0

y2 = (x0 + x1 + x2) / 3               =  1/3 x2 + 2/3 y1

y3 = (x0 + x1 + x2 + x3) / 4        =  1/4 x3 + 3/4 y2

yn = 1/(n+1) xn + n/(n+1) yn-1        =  (1-b) xn + b yn-1

So the present output 

depends on the present input and previous outputs

In DSP recursion is called AutoRegression (term invented by Udny Yule)

Note: to be time-invariant, b must be non-time-dependent (not like here!)



Unraveling the recursion

Given an AR form we can swap the recursion for an infinite iteration

For example, the simplest AR filter is yn = xn + b yn-1

In general AR filters can be written as infinite convolutions

yn = σ𝑙=0
∞ ℎ𝑙 𝑥𝑛−𝑙

Try this for the AR with 2 time delays
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(we’ll leave out the input gain for now)



AR is a filter

The recursive AR form is an AR (autoregressive) filter

LINEARITY

Start from the infinite convolution form 

the proof is the same as for the MA filter

TIME INVARIANCE

Start from the infinite convolution form 

the proof is the same as for the MA filter

as long as the coefficients are not time dependent
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Frequency response of an AR filter

Let’s try our simple AR example yn = (1- b) xn + b yn-1

What happens for DC?

We know that for all n    xn=1    and    yn = H0

so H0 = (1- b) + b H0   or H0 (1 – b) = (1- b) so   H0 = 1

What happens for Nyquist ?

We know that  xn=… -1 +1 -1 +1 …   and   yn = … -Hπ +Hπ -Hπ +Hπ …

so Hπ = (1- b) - b Hπ or  H π (1+b) = (1- b)   so   Hπ = (1- b) / (1+b)

For general frequency ω :  xn = eiωn  and yn = H(ω)eiωn

so H(ω)eiωn = (1- b)eiωn + bH(ω)eiω(n-1)   so  H(ω) = (1- b) + bH(ω) e-iω

so H(ω) = (1- b) / (1 - b e-iω)   Why is this complex (i.e., has a phase shift)?

and  |H(ω)|2 =  1 / (1 - 2bcos(ω) + b2 ) 
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we purposely put the input gain back in!



The AR frequency response
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b = 0.5

b = 0.95

b = 0.6

b = 0.7

b = 0.8

b = 0.9

yn = (1- b) xn + b yn-1

For small b  yn ≈  xn so H(ω) ≈ 1

For large b  yn can’t keep up with x

so H(ω) is very low-pass



The harder way

But we cheated! We haven’t yet proven the filter law

We can find the frequency response of the AR filter 

from the unraveled form, but without using the filter law

(we used the formula for the sum of an infinite series

σ𝑘=0
∞ 𝑞𝑘 =

1

1−𝑞
with    q = 𝛽 𝑒−i𝜔 )
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The accumulator

We once defined the accumulator y = ෡Υ x  

by 𝑦𝑛 = σ𝑚=0
∞ 𝑥𝑛−𝑚

(the inverse of the first finite difference - ෡Υ ෠∆ = ෠∆෡Υ = 1)

We can write the accumulator as an AR filter

𝑦𝑛 = 𝑥𝑛 + 𝑦𝑛−1
If we input DC this explodes! (AR filters can be unstable)

What is the frequency response?

Thus 

So |H(ω)| is very similar to the FR of the true integrator!
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MA, AR and ARMA

The general causal system looks like this:

yn = f ( xn , xn-1 … xn-l ; yn-1 , yn-2 , …yn-m ; n )

But the general causal filter has to be 

a linear combination of the inputs and outputs

This is called ARMA (it would be hard to say MAAR)

if bm=0 then it is MA

if a0=0 and al >0=0 but bm≠0 then it is AR

Why doesn’t the ARMA filter depend explicitly on n ?

Why does the sum only include previous inputs and outputs?

Why must the function be a linear combination of them ?

Why does m start at 1 and not 0 ?
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Symmetric form of writing ARMA

We can write the ARMA equation in symmetric form

by terms moving from side to side

This form is a called a difference equation

since it can be rewritten as  σ 𝐵𝑚 ෠∆𝑚𝑦 = σ 𝐴𝑙 ෠∆
𝑙𝑥

What is the connection between the coefficients?



3 ways of writing the ARMA filter
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So far we can write the causal ARMA filter in 3 ways

ARMA form

Symmetric form

(difference equation)

Infinite convolution

What happens when the filter is MA? AR?

How can we translate between representations?

it looks nicer with L
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System identification

Up to now we have discussed 

what a known ARMA system does to a given input

Now let’s consider the converse problem

We are given an unknown system with one input and one output

think of the system as inside a black box which can’t be opened

What is known are the input and output to the black box

Can we figure out what is inside the box ?

This is called the system identification problem

x y
unknown

system
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Identification?

What do we mean by identifying the system ?

You are given the unknown system for some amount of time 

You need to be able to predict the output for any given input

For ARMA systems, it is enough to know any of these:

◼ ARMA form – L a coefficients and M b coefficients 

◼ symmetric form (difference equation) L α coefficients, M β coefficients

◼ infinite convolution form  all ℎ𝑙

◼ the frequency response   all Hk

since from any of these we can calculate the output y for all times

x y
unknown

system
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Two flavors

There are two different ways this game can be played

Easy system identification problem

◼ we are allowed to input any x we want and observe the output y

◼ what input should  we use?

Hard system identification problem

◼ the system is already "hooked up" 

we can only observe the input x and  output y

The hard problem is indeed harder than the easy problem

for example - what happens if the input is always 0?

unknown

system

x y
unknown

system
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Filter identification

Is the system identification problem always solvable ?

Not if the system characteristics can change over time

Since you can't predict what it will do next

So only solvable if system is time invariant

Not if system can have a hidden trigger signal

So only solvable if system is linear

Since for linear systems

◼ any signal is the sum of the trigger plus the difference

◼ small changes in input lead to bounded changes in output

So only solvable if system is a filter !
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Easy problem
Impulse Response (IR)

To solve the easy problem (where we can input any signal(s) we want)

we need to decide which input signal x to use

One common choice is the unit impulse

the signal that is zero everywhere except at time zero n=0

The response of the filter to an impulse at time zero (UI)

is called the impulse response IR (not a surprising name !)  

תגובה להלם    

The impulse response of a filter is universally called hn

What can we say about the impulse response for a causal system?

0 0

hn



Some impulse responses

What is the impulse response for an MA filter?

hn = σ𝒍=𝟎
𝑳−𝟏𝒂𝒍 𝜹𝒏−𝒍,𝟎 = 𝒂𝒏

So, the MA coefficients are exactly the impulse response

What is the impulse response for an ARMA filter ?

Use the infinite convolution form!

hn = σ𝒍=𝟎
∞ 𝒉𝒍 𝜹𝒏−𝒍,𝟎 = 𝒉𝒏

which is why we called these coefficients h in the first place!

The IR of an MA filter is nonzero for a finite number (L) of times

and so MA filters are called Finite Impulse Response filters

The IR of AR or general ARMA filters 

is nonzero for an infinite number of times (due to the recursion!)

and so they are called Infinite Impulse Response filters
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IR for MA filter
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a2 a1

*

a0

* ***

0

**

0 0 0 0 010

We can see why MA filters are FIR

 by the following graphical construction



IR for MA filter
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a2 a1

*

a0

* ***

a0

**

0

0 0 0 0 010

We can see why MA filters are FIR

 by the following graphical construction



IR for MA filter
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a2 a1

*

a0

* ***

a1

**

a00

0 0 0 0 010

We can see why MA filters are FIR

 by the following graphical construction



IR for MA filter
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a2 a1 a0

*

a2

**

a1a00

0 0 0 0 010

We can see why MA filters are FIR

 by the following graphical construction



IR for MA filter
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0 0 0 0 010

a2 a1

*

a0

* ***

0

**

a2a1a00

You see why we chose this direction?

 convolution, not correlation!

We can see why MA filters are FIR

 by the following graphical construction



Y(J)S   DSP     Slide 59

IR solves the easy SI problem!

It is enough to input one simple signal to know the system !

◼ if we know the response of a filter to the UI 

we know its response to any SUI

because of time invariance (just shift the impulse!)

◼ if we know the response of a filter to all SUIs 

we know its response to any weighted combination of SUIs

because of linearity (add the weighted outputs!)

◼ any input signal x

can be written as the weighted combination of SUIs

since SUIs are a basis

0

hn

0
m

hn

m
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Easy problem
Frequency Response (FR)

We have found one solution to the easy SI problem 

Another common choice of input are the sinusoids   

xn = sin ( k n )

But we need to enter all possible sinusoids (k=0, 1, …)

However, from the filter law we know that 

sinusoids are eigensignals of filters
the response to a sinusoid of frequency  :  sin (  n )

is a sinusoid of frequency  (or zero output)  

yn = A sin (  n  + f )

So we input all possible sinusoids 

but record only the frequency response FR

◼ the gain Ak

◼ the phase shift fk

k Ak fk
0

1

2
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FR solves the easy SI problem!

It is enough to input these sinusoids to know the system !

◼ if we know the response of a filter to  xn = sin ( k n )

we know its response to xn = sin ( k n + f )

because of time invariance 

◼ if we know the response of a filter to arbitrary sinusoids 

we know its response to weighted combination of them

because of linearity (add the weighted outputs!)

◼ any input signal x

can be written as the weighted combination of sinusoids

since they are the Fourier basis



Does this make sense?

In the first solution we only needed one trial

we entered one input the UI 

and recorded the impulse response hn

In the second solution we had to enter many inputs – all the sinusoids!

Does this make sense?

For the impulse response we needed to record many time values

for the frequency response 

we only needed one complex number for each input

For example, assume a signal with N values (in time/frequency domain)

and an MA with N coefficients 

◼ for hn we need to record N values

◼ for Hk we need to record N coefficients : 1 for each frequency

Why do you think we call the IR h and the FR H ?
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The easiest hard problem 

The hard problem is so hard 

that we will start with a simple case

◼ Assume an MA filter with 3 coefficients

yn = σ𝒍=𝟎
𝑳=𝟐𝒂𝒍 𝒙𝒏−𝒍 = a0 xn + a1 xn-1 + a2 xn-2

◼ We further assume that the input was zero until time n=0
(we can always take the time the signal starts to be n=0 …)

so xn<0 = 0

We need to find 3 unknowns – a0, a1, and a2

so we will need three equations to solve
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The easiest hard problem (cont.)

First let’s write the equation for n=0

y0 = a0 x0 + a1 x-1 + a2 x-2 = a0 x0 

Since x0 ≠ 0 we can divide to find a0 = y0 / x0  

Next we write the equation for n=1

y1 = a0 x1 + a1 x0 + a2 x-1 = a0 x1 + a1 x0 

What do we already know?

y1 = a0 x1 + a1 x0 so a1 = (y1 - a0 x1) / x0 

which is OK since x0 ≠ 0 

Finally we write the equation for n=2

y2 = a0 x2 + a1 x1 + a2 x0

so a2 = (y2 - a0 x2 - a1 x1 ) / x0   which is OK since x0 ≠ 0 
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The easiest hard problem – matrix form

First can rewrite the three equations 

y0 = a0 x0 

y1 = a0 x1 + a1 x0 

y2 = a0 x2 + a1 x1 + a2 x0 

in matrix format (with the coefficient as the vector)

which can be solved by inverting the matrix
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The easiest hard problem – some more

The matrix to invert                              is lower triangular  

which is why it was so easy to solve

In fact, our solution was the straightforward inversion!

But this matrix has another characteristic 

it has Toeplitz (T ሷoplitz) form 

– the same value along diagonals
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Otto Toeplitz



A slightly harder problem

◼ Assume an MA filter with 3 coefficients

yn = σ𝒍=𝟎
𝑳=𝟐𝒂𝒍 𝒙𝒏−𝒍 = a0 xn + a1 xn-1 + a2 xn-2

◼ but the input does not start nonzero

We still need to find the 3 unknowns – a0, a1, and a2

so we will need three equations to solve

So pick any n (there is nothing special about any time) 

and write three consecutive equations

yn = a0 xn + a1 xn-1  + a2 xn-2 

yn+1 = a0 xn+1 + a1 xn + a2 xn-1 

yn+2 = a0 xn+2 + a1 xn+1  + a2 xn

Note that we need to observe 5 consecutive times

n-2 xn-2     n-1 xn-1   n xn and yn

n+1 xn+1 and yn+1 n+2 xn+2 and yn+1 
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Solving the slightly harder problem

Let’s jump directly to the matrix form

So, here is yet another connection 

between convolution and (matrix) multiplication

The solution is once again to invert the matrix

but this time it is not lower triangular

but it is still Toeplitz

Inverting a general matrix is O(N3) and may be unstable

(well actually O(nlog2(7)) = O(n2.807) or even less)

but inverting a Toeplitz matrix takes only O(N2)

and is always stable (Levinson Durbin algorithm)
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BTW – another connection

We wanted to solve for the coefficients 

and thus put them into a vector

In other circumstances we may want to rewrite the equations

yn = a0 xn + a1 xn-1  + a2 xn-2 

yn+1 = a0 xn+1 + a1 xn + a2 xn-1 

yn+2 = a0 xn+2 + a1 xn+1  + a2 xn

in another form

Here the matrix is Toeplitz but not square!

This is yet another connection between convolution 

and multiplication by a Toeplitz matrix!
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Wiener-Hopf equations

The equations we found

are called the Wiener-Hopf equations

However, you will never see them written in this simple way!

That is because of noise!

If we solve them twice for different n

we won’t get exactly the same answer

So you might solve many times and average the solutions

but that would require many matrix inversions

and is not even the right thing to do!

Norbert Wiener



What’s the right way?

Let’s go back to the original MA equation

yn = σ𝒍=𝟎
𝑳 𝒂𝒍 𝒙𝒏−𝒍

Multiple both sides by xn+j and sum over all n 

෍

𝑛

𝒚𝑛 𝒙𝑛+𝑗 =෍

𝑛

෍

𝑙

𝒂𝑙 𝒙𝑛−𝑙 𝒙𝑛+𝑗

Remember that we mentioned the correlation of x and y ?

𝐶𝑥𝑦 𝑗 = ෍

𝑛

𝒙𝑛 𝒚𝑛+𝑗

So the Wiener-Hopf equations can be written:

𝐶𝑦𝑥 𝑗 = σ𝑙 𝒂𝑙 𝐶𝑥𝑥(𝑗 − 𝑙)

This has the same form, but need be solved only once!
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we can reverse the summation order!



What about AR filters?

Now let’s assume that the unknown system 

is an AR filter with 3 coefficients

yn = xn + σ𝒎=𝟏
𝑴=𝟑𝒃𝒎 𝒚𝒏−𝒎 = xn + b1 yn-1 + b2 yn-2 + b3 yn-3

Once again we have three coefficients to find

so we need to write 3 equations

Note that we need to observe 6 times - 6 ys and 3 xs
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Yule-Walker equations

Let’s write the equations in matrix form

𝑦 = 𝑥 + 𝑦 𝑏 so       𝑏 = 𝑦−1 (𝑦 − 𝑥)

These are called the Yule Walker equations

The matrix has Toeplitz form

and so is solved by Levinson-Durbin 

Your cellphone solves YW equations 

thousands of times per second !

Udny Yule

Sir Gilbert Walker

vector
matrix



What is the right way?

However, you will never see the Yule Walker equations 

written in this simple way because of noise

Instead take the original AR equation (without the x)

yn = σ𝒎=𝟏
𝑴 𝒃𝒎 𝒚𝒏−𝒎

Multiply both sides by yn+j and sum over all n

෍

𝑛

𝒚𝑛+𝑗 𝒚𝑛 =෍

𝑛

෍

𝑚

𝒃𝑚 𝒚𝑛−𝑚 𝒚𝑛+𝑗

which can be written

𝐶𝑦𝑦 𝑗 = σ𝑚𝒃𝑚 𝐶𝑦𝑦(𝑗 − 𝑚)
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we can reverse the summation order!



What about (full) ARMA filters?

We can repeat the entire exercise for general ARMA filters

We have L+M variables and so have to write L+M equations

But the matrix will not turn out to be Toeplitz

and thus the equations will be difficult to solve!

So, in DSP we try to make every system identification problem

either MA or AR !
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Another way to solve

So far we have worked in the time domain

Why can’t we use the filter law directly?

Since Yk = Hk Xk we can divide to find Hk = Yk / Xk

and knowing Hk determines the filter!

The problem is that Xk can be zero! 

So, instead we will use the z transform

and at last prove the filter law!

We will start with 

the infinite convolution form of the ARMA filter
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Using z transform
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The transfer function

So we have found that  Y(z) = H(z) X(z)

H(z) is called the transfer function

We defined H(z) = σ𝑛=−∞
∞ ℎ𝑛 𝑧

−𝑛

which means that H(z) is the zT of the impulse response

In particular, if we look only on the unit circle

we find Y(ω) = H(ω) X(ω)

and on the digital points Yk = Hk Xk

Which is precisely the filter law 

Furthermore, we see that the frequency response Hk

is the FT of the impulse response hn

This explains why we called them h and H !
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Let’s do that again!

To find out even more We will do the same kind of calculation

but this time start with the symmetric form of the ARMA filter

remember β0 = 1

Now we take the zT of both sides

and do our usual tricks to get
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The entire calculation
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H(z) is a rational function
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B(z) Y(z)   =   A(z) X(z)

so Y(z) =     A(z) / B(z)  X(z)

but we know Y(z) = H(z) X(z)

so H(z) = A(z)  /  B(z)

A(z) and B(z) are polynomials in z-1

By multiplying by zL and zM respectively

we can make them into polynomials in z

This means that the transfer function is a rational function

that is, the ratio of two polynomials in z

In complex function theory

◼ the roots of the numerator are called zeros of H(z)

◼ the roots of the denominator are called poles of H(z)



Poles and zeros

From the fundamental theory of algebra we know that

every polynomial of degree n has n roots over the complex numbers

Hence we can write

where we see the zeros and poles of the transfer function

An important theorem in complex functions states

that the zeros and poles determine a rational function

to within a multiplicative constant 

So the poles and zeros of the transfer function determine the filter 

to within an overall gain

In diagrams zeros are shown as ● and poles as x
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Special cases

If the ARMA form is actually an MA filter 

then there are α coefficients

but all the β are zero except β0 = 1

So H(z) = A(z) / B(z) = A(z) has zeros but no poles!

If the ARMA form is actually an AR filter

then there are β coefficients

but all the α are zero except α0 = 1

So H(z) = A(z) / B(z) = 1/B(z) has poles but no zeros

If the ARMA filter is general (not MA or AR)

then it has both poles and zeros
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Summary of filter names
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FIR MA all zeros

IIR AR all poles

ARMA zeros and poles



What do zeros/poles mean?

Since Y(z) = H(z) X(z), if the input is xn = zn the output is yn = H(z) zn

◼ A zero at z means that if the input is xn = zn the output is zero!

– A zero on the unit circle

means an input sinusoid xn = sin(ωn) 

for which the output is zero

◼ A pole means that if the input is that signal

the output explodes!

– A pole on the unit circle

means an input sinusoid xn = sin(ωn) 

for which the output explodes

Why do zeros and poles not on the real axis come in pairs?

Why don’t we allow poles on or outside the unit circle

while zeros can be anywhere?
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DCNyquist

ω>0

ω<0

z



Are zeros important?

The filter law Y(ω) = H(ω) X(ω) tells us that

no new frequencies are created

but frequencies can disappear (when H(ω)=0) !

We call a frequency that disappears a zero of the filter

and more generally a signal zn that disappears

We already saw examples of MA filters with zeros!

◼ yn = xn – xn-1 (first finite difference) has a zero at DC

◼ yn = xn + xn-1 has a zero at Nyquist

◼ yn = xn + xn-2 has a zero at half Nyquist (ω = π/2)

◼ Bandstop and notch filters are used because of their zeros
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band stop
f

notch
f

H(ω) H(ω)



Are poles important?

The filter law in the z plane Y(z) = H(z) X(z) tells us that

no new zn signals are created

but these signals can explode (when H(ω)=∞) !

We call a zn signal that explodes a pole of the filter

We already saw examples of AR filters with poles!

◼ yn = xn + yn-1 (accumulator) has a pole at DC

◼ yn = xn – yn-1 has a pole at Nyquist

◼ yn = xn – yn-2 has a pole at half Nyquist (ω = π/2)

◼ we don’t want poles on the unit circle (for sinusoids!)

but sinusoids that are amplified 

require nearby poles
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Designing filters by poles and zeros

DSP experts sometimes design filters directly using poles and zeros!

What do the following pole/zero diagrams mean?
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How to find the transfer function?

If you are given the filter in the time domain

it is easy to find its transfer function and poles/zeros

by the following steps:

1. Move all the ys to one side and xs to the other

to create the symmetric form

2. Write the equation in terms of signals using delay operators

3. Take the zT of both sides using our rule zT(ො𝐳-1 x) = 𝑧-1 zT(x)

4. Divide leaving Y(z) on the LHS

5. Change numerator and denominator into polynomials (discard zM)

6. Find the roots of the polynomials
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Summary - filters

FIR = MA = all zero

IIR: AR = all pole

ARMA= zeros and poles

The following contain everything about the filter

(are can predict the output given the input)

◼ a and b coefficients

◼ a and b coefficients

◼ impulse response hn

◼ frequency response H()

◼ transfer function H(z)

◼ pole-zero diagram + overall gain

How do we convert between them ?
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Conversions
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Exercise - causal MA

yn = xn + xn-1 

◼ this filter is causal MA

◼ we can immediately guess that it is low-pass since 

– it averages!

– H(DC) = 2   (from H = 1 + 1) – gain=2!

– H(Nyquist) = 0 (from H = 1 +1)

◼ impulse response is 1, 1

◼ frequency response: H(ω)eiωn = eiωn + eiω(n-1) 

so H(ω) = 1 + e-iω = e-iω/2 (e+iω/2 +e-iω/2 ) = phase*2cos(ω/2)

causality results in phase!

◼ transfer function 

y = (1 + Ƹ𝑧−1) x so H(z) = 1 + 1/z → z+1

Try  yn = xn - xn-1 
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n=0

IR

PZ

FR

π



Exercise -noncausal MA

yn = xn-1 + xn+1 

◼ this filter is noncausal MA

◼ we can immediately guess that it is band-stop since 

– H(DC) = 2   (from H = 1 + 1)

– H(Nyquist) = 2 (from H = 1 +1)

– H(mid) = 0 (use x = -1 0 +1 0)

◼ impulse response is 1, 0, 1

◼ frequency response: H(ω)eiωn = eiω(n-1) + eiω(n+1) 

so H(ω) = eiω + e-iω = 2 cos(ω)

◼ transfer function 

y = ( Ƹ𝑧−1 + Ƹ𝑧+1) x  so H(z) = z + 1/z = z2+1 = (z+i)(z-i)

Why are there 2 zeros?
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n=0

IR

FR

PZ



Exercise - AR

yn = xn + ½ yn-1 

◼ this filter is causal AR

◼ we can immediately guess that it is LP since 

– H(DC) = 2   (from H = 1 + ½ H)

– H(Nyquist) = 2/3 (from H = 1 – ½ H)

◼ impulse response is 1, 1/2, 1/4, 1/8, …

◼ frequency response: H(ω)eiωn = eiωn + ½ H(ω)eiω(n-1) 

so H(ω) = 1 / (1-½e-iω) = 2/(2 - e-iω)

|H(ω)|2 = 4 / (5 – 4 cos(ω))

◼ transfer function 

(1 – ½ Ƹ𝑧−1) y = x  

so H(z) = 1/(1- ½ z-1) = 1 / (z- ½)

i.e., 1 pole at ½
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n=0

IR

FR

PZ



Exercise - ARMA

yn = xn − 
3

2
xn−1 + 

1

2
xn−2 − yn−1 − 

1

2
yn−2

◼ this filter is causal ARMA

◼ impulse response 1, -
5

2
, + 

5

2
, -

5

4
, 0, …

◼ at DC H(DC) = 1 −
3

2
+ 
1

2
− H(DC) − 

1

2
H(DC)  so  H(DC) = 0

◼ at Nyquist H(Nyq) = 1 +
3

2
+ 

1

2
+ H(Nyq) − 

1

2
H(Nyq)  so H(Nyq) = 6 

◼ frequency response

H(ω)eiωn = eiωn − 
3

2
eiω(n-1) + 

1

2
eiω(n-2) − H(ω)eiω(n-1) − 

1

2
H(ω)eiω(n-2)

H(ω) = 
1−

3

2
eiω+

1

2
e2iω

1+eiω+
1

2
e2iω = 

−
3

2
+cos ω +

1

2
eiω

1+cos ω +
1

2
eiω

| H(ω) |2 =  

10

4
−
9

2
cos ω + 2𝑐𝑜𝑠2(ω)

5

4
+ 3 cos ω + 2𝑐𝑜𝑠2(ω)
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Exercise - ARMA (cont.)
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1.

2.

3.

4.

5. 6.

see example for an ARMA filter

substitute z=eiω for the frequency response

http://www.dspcsp.com/exercises/pzex.pdf
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