
Part 3
Signal Processing Algorithms

0368.3464

עיבוד ספרתי של אותות

Digital Signal Processing for Computer Science

AKA

Digital Signal Processing – Algorithms and Applications

Y(J)S DSP Slide 1

What is a graph?

A graph is a collection of

◼ points (AKA vertices, nodes)

◼ lines (AKA edges, links) between the points

In DSP we will only use digraphs = directed graphs

where every line has a direction

Graph theory was invented by Euler to solve

the puzzle of the K ሷonigsberg bridges

But first he had to invent topology

Y(J)S DSP Slide 2

map topologically equivalent map
graph

Pregel river

There is an Euler cycle

iff every point has even degree

Is it possible to leave your home for a walk,

cross all the bridges exactly once,

and return home? (an Euler cycle)

Topology?

Topology is a generalization of geometry

◼ in geometry congruence allows translation and rotation

◼ in affine geometry we also allow scale changes (zoom)

◼ in projective geometry we allow

any transformation from lines to lines (maintains collinearity)

here all triangles are equivalent, but squares are different

◼ in topology we allow any transformation

that doesn’t tear or glue together space

(think of drawing on a rubber sheet)
Y(J)S DSP Slide 3

Side Side Side

Side Angle Side

Angle Side Angle

 but not

Angle Angle Angle

Side Side Side

Side Angle Side

Angle Side Angle

Angle Angle Angle

Some more topology

Topology’s equivalence relationship is called homeomorphism

A homeomorphism is a continuous function from space to space

with a continuous inverse function

In topology distance, angle, and linearity are meaningless

◼ triangle = square = polygon = circle

◼ all curves that don’t cross themselves are equivalent

◼ a figure 8 is not the same as a circle (would require a tear)

(the number of holes is preserved)

◼ in 3D topology a sphere is equivalent to a cube

but not to a donut

What Euler realized is that the existence of a Euler cycle

is independent of the bridge location and orientation

The bridge puzzle is truly a topological problem

Y(J)S DSP Slide 4

Continuous transformations

Y(J)S DSP Slide 5

Continuously morph a square into a circle (and back again)

Continuously triangle into a square (and back again)

Topology and graph theory

In graph theory all we care about is connectivity

which point is connected to which point

We don’t care about the length or angle of the line

or even if it is a line

The meaning of a graph is purely topological

So all the following digraphs are equivalent:

But not or

Y(J)S DSP Slide 6

x y x y

y x

x

y

x y

y x x w y

Graph theory in CS

In the early days of computer science

programs were represented by block diagrams

which are a kind of graph

This representation has been mostly abandoned

for several reasons:

◼ block diagrams are actually a programming language

so using them in addition to code

means maintaining 2 code different sets

◼ block diagrams are tightly coupled to

imperative program with goto statements

which has been disparaged

◼ block diagrams are purely documentation

and add nothing positive to the programming process

◼ block diagrams only describe algorithms

Wirth’s Law

programs = algorithms + data structures

But in DSP we still use signal flow graphs!
Y(J)S DSP Slide 7

processing

if

true

false

Goto A

Y(J)S DSP Slide 8

Signal flow graphs

Shannon introduced signal flow graphs in which

◼ the points represent signals

◼ the lines (and things on lines) represent signal processing functions

These graphs capture both

◼ algorithms and

◼ data structures

In addition to their purely documentary function

signal flow graphs are useful because of graphical mechanisms

for simplifying graphs

lowering computational power or memory requirements

Y(J)S DSP Slide 9

The simplest graph

The simplest signal flow graph has 1 point and represents a signal

When we write a letter next to a point (below, left, right, above)

it represents the name of the signal (here: x !)

When interpreting signal flow graphs

it is often useful to ask – what is the value of the signals at time n ?

So we sometime draw

But don’t be confused!

The point represents the signal xn Ɐn= - … +

not a particular value

x

xn

Y(J)S DSP Slide 10

The next simplest graph

The simplest nontrivial signal flow graph has 2 points and one line

and it represents signal identity (y = x, i.e., Ɐn= - … + yn = xn)

Of course, due to the topological nature of graphs

we could have drawn this graph in many other ways

And in this case only we can also reverse the line direction

Note that we will often neglect to draw the point when it is obvious

(i.e., at the end of a line)

(we will later only draw points in specific places …)

y x
x

y

x y y = x

identity = assignment

x y

y x x y

Y(J)S DSP Slide 11

What does this mean?

We can figure this out by naming the unlabeled point w

and breaking the graph down into three parts

So w = x and y = w = x and also z = w = x

WARNING! Do not think of this as electrical currents

in which case y=x/2 and z=x/2 !

This graph is called the splitter

Note that the splitter always has

1 signal going in and 2 signals coming out

x

z

y

y = x

and

z = xsplitter =

tee connector

x

z

y

x w

x

z

y

w

Y(J)S DSP Slide 12

Gain

The simplest signal processing is the gain y = g x (Ɐn= - … + yn = g xn)

We draw this by putting the letter g next to the arrow

Note that (for g ≠1) this is very different from

but the same as

Be careful!

A letter near a point tells you the signal’s name

but a letter near an arrow represents a gain

x y
g

y = g x
gain

y x
g

x = g y

x y
g

x

y

g

y

x

g

y x
g etc.

Y(J)S DSP Slide 13

Delay

y = ොz−1 x (Ɐn= - … + yn = xn-1)

We have seen that the unit delay is very important in DSP
and so it deserves its own graphical symbol

and as usual we can draw this in various orientations, such as

is the same as ?

x yz-1

unit delay

y xz-1

y

x

z-1

x yz-1
g

yx z-1

g

Drawing points

We will always explicitly draw the point after a delay element

Since this point represents a signal value that must be remembered

that is, a memory location

For this reason we frequently use the term memory point

Marking memory points

help us count up how much memory is required

For example, we see that y = ොz−3 x requires 3 memory points

Note: We will sometimes temporarily draw and label points

just in order to understand the graph
Y(J)S DSP Slide 14

z-1

z-1 z-1 z-1x y

Y(J)S DSP Slide 15

Adder

x z

y

z = x + y

Signal addition is very important as well!

We define the two-signal adder

which of course means

Ɐn= - … + zn = xn + yn

Note that the adder always has

2 signals going in and 1 signal coming out

As usual, we could draw the adder in many ways!

adder

x z

y

xz

y

x

z

y

Y(J)S DSP Slide 16

Subtractor

z = x - y

x z

y

-

For convenience we also define the 2-signal subtractor

Although we could have used insteadx z

y

-1

Note the position of the minus sign

It can be at either (or both) of the adder’s inputs!

Y(J)S DSP Slide 17

The finite difference

We can now use what we have learned so far to draw a useful graph

 the finite difference y = Δ x (i.e., yn = xn - xn-1)

To see that this is correct label needed points (not just the memory points)

 with their value at time n

yn = xn - xn-1

xn

xn

xn-1

splitter

yn

The butterfly

Remember the DFT for N=2 ?

X0 = x0 + x1

X1 = x0 – x1

We can draw this as a DSP graph

(it is not really a signal flow graph!)

Rotating this 90 degrees and using a lot of imagination

one can understand why this is called a butterfly

Y(J)S DSP Slide 18

Y(J)S DSP Slide 19

The basic MA filter

yn = a0 xn + a1 xn-1

Let’s draw something even more interesting

To see that this is indeed the MA filter label all these points

xn a0 xn

xn xn-

1

a1 xn-1

yn

Y(J)S DSP Slide 20

Basic MA blocks

yn = a0 xn + a1 xn-1

Here are 4 interesting ways to draw this same simple MA filter

What transformations brings us from one to the other?

topological

c
o

m
m

u
te

to
p

o
lo

g
ic

a
l

Y(J)S DSP Slide 21

Why do we need 4 blocks?

Products next to adder –

 can make memoryless chip

Products all parallel –

 easy to iterate (we’ll see later)

y line is different height from x line

Products all parallel –

 easy to iterate (we’ll see later)

Delay element adjacent to adder

Commutativity

Note that it is obvious that the gain g and the delay ොz−1 commute

but this is true more generally for any two filters

While somewhat complicated to prove in the time domain

it is simple to see in the frequency (or z) domain

Since filters obey Y(ω) = H(ω) X(ω)

two filters – f and g – in series obey Y(ω) = G(ω) F(ω) X(ω)

while in the opposite order Y(ω) = F(ω) G(ω) X(ω)

which is the same thing since functions commute!

Show 2 systems that do not commute
Y(J)S DSP Slide 22

f g
F(ω) X(ω)

X(ω)

G(ω) F(ω) X(ω)

Y(ω)

g f
G(ω) X(ω)

X(ω)

F(ω) G(ω) X(ω)

Y(ω)

Y(J)S DSP Slide 23

General MA

Now we consider the general MA filter with L coefficients

We would like to draw

but we only defined 2-input adders !

=

−=
L

l

lnln xay
0

Y(J)S DSP Slide 24

Tapped delay line

Before correcting this, note that top of this diagram

has an interesting analog interpretations

Engineers think of this as a tapped delay line

similar to a length of cable with finite transmission velocity

But since information travels in (copper or optical) cables

at 2/3 the speed of light (200 meters per μsec)

you need a long cable for significant delay !

tapped delay line

Y(J)S DSP Slide 25

A data structure!

We will think of this differently (and find a data structure in addition to the algorithm)

Considering the memory points from some time

we find a data structure (assume L=8)

with the following time varying contents

We see that values that enter first from the left

exit (are discarded) first to the right

so this is a FIFO buffer

x1x2x3x4x5x6x7x8

x2x3x4x5x6x7x8x9

x3x4x5x6x7x8x9x10

x4x5x6x7x8x9x10x11

z-1x z-1 z-1 z-1 z-1 z-1 z-1 y

Y(J)S DSP Slide 26

How do we fix the adders

So, were we to use an N-input adder

we would have a FIFO, multiplications, and an adder

Let’s perform the additions one at a time!

FIFO

Y(J)S DSP Slide 27

General MA – 1st way

We still have the tapped delay line = FIFO as a data structure

but now we perform Multiplication + Accumulations (MACs)

We have previously mentioned how important MACs are in DSP

Another way of looking at this is iteration on one of our basic MA blocks

Which one ?

=

−=
L

l

lnln xay
0

MACs

Y(J)S DSP Slide 28

Iteration – 1st way

We iterate on basic block D

So this graph tells us

1. Data structure = FIFO

2. Algorithm = iteration over MA block D

=

−=
L

l

lnln xay
0

MACs

Y(J)S DSP Slide 29

The signal’s point of view

We saw how to look at this from the processing point of view

Sometimes it is useful to look at graphs from the signal’s point of view!

• the signal enters the filter and is split into 2 replicas : A and B

• gain is applied to replica A, replica B is delayed

• replica B is split in two : C and D

• gain is applied to replica C, which then is added to replica A

• etc.

Y(J)S DSP Slide 30

General MA – 2nd way

This isn’t the only way to compute a general MA

Here we see an alternative

It still uses a FIFO data structure

(which is now vertical – but who cares?)

Which basic MA block is used here?

So this graph tells us

1. Data structure = FIFO

2. Algorithm = iteration over MA block A FIFO MACs

Y(J)S DSP Slide 31

Two ways to MA

Is there any difference between these two ways?

◼ the 1st way MACs from the new x backward

 a0 xn + a1 xn-1 + … + aL xn-L

◼ the 2nd way MACs from the earliest x forward

 aL xn-L + … + a1 xn-1 + a0 xn

Theoretically there is no difference

 (addition is commutative)

but in practice there may be

Given a list of numbers sorted from smallest to largest

 which way is most accurate to sum?

Y(J)S DSP Slide 32

Basic AR block

What is the graph for the basic AR filter ?

Here is one way:

Note that for the first time we see a loop in the graph

in none of the MA filters was there a loop!

Whenever there is a loop, there is recursion (AR)

Put another way – loops correspond to poles

1−+= nnn byxy

Y(J)S DSP Slide 33

How does it work?

As usual – let’s label points to see why this works

We don’t worry about signals from the past influencing the output now

but non-causal loops can be paradoxical (like time travel)

This is just one way the draw the simple AR

there are 4 basic blocks here too

Can you find them?

1−+= nnn byxy

yn

yn
yn-1b yn-1

xn xn + b yn-1

A loop with no delay

It can be useful (but dangerous) to make a loop with no delay

Consider an amplifier

which has some of the output fed back into the input

Then instead of y = g x we have y = g(x+by) or y – bgy = gx

and hence y =
g

1−bg
x

So the feedback increases the amplifier’s gain when b < 1/g

but explodes as b → 1/g

We see here the connection between loops and poles!

The same thing happens with delay

but only for certain frequencies! Y(J)S DSP Slide 34

x y

b

g

x y
g

Y(J)S DSP Slide 35

General AR filters

=

−+=
M

m

mnmnn ybxy
1

Here are two ways to implement the general AR filter

Explain why these indeed implement the AR

Is there any difference between these two ways?

Y(J)S DSP Slide 36

ARMA filters – stage 1

=

−

=

− +=
M

m

mnm

L

l

lnln ybxay
10

What do we do about ARMA filters?

The straightforward implementation would be

◼ perform the MA portion using one of our MA implementations

◼ perform the AR portion using one of our AR implementations

◼ add the two together

MA AR

=

−

=

− +=
M

m

mnm

L

l

lnln ybxay
10

MA AR+

Y(J)S DSP Slide 37

How much memory?

=

−

=

− +=
M

m

mnm

L

l

lnln ybxay
10

By observing the graph we see

that L+M memory points are used

Without limiting generality

we can say 2L memory points

and assume L=M

Why? Take max(L,M)

and pad the other with zeros

We will now use graph theory

to reduce the number

of needed memory points

u

Y(J)S DSP Slide 38

ARMA filters – stage 2

=

−

=

− +=
M

m

mnm

L

l

lnln ybxay
10

The graph has two filters in series

◼ 1 MA and 1 AR

Since any 2 filters commute

we can exchange their order

We obtain this new graph

Note that the signal w

between the 2 filters

is different from the signal u !

w

Y(J)S DSP Slide 39

ARMA filters – stage 3

=

−

=

− +=
M

m

mnm

L

l

lnln ybxay
10

We see that there are points

representing the same signal !

All of these are

So we can combine the memory locations

and remove un-needed delays

This is a new graph transformation

wn

wn-1

wn-2

Y(J)S DSP Slide 40

ARMA filters
stage 3

=

−

=

− +=
M

m

mnm

L

l

lnln ybxay
10

We now require only L memory points

instead of 2L memory points

A reduction to 50% !

The transposition theorem

Another transformation that creates a new graph

that is equivalent in functionality to the original one

is given by the Transposition theorem

This transformation is more complex

since multiple operations are carried out at the same time

◼ exchange input(s) and output(s)

◼ reverse direction of all arrows

◼ replace adders with splitters (since now 1 in - 2 out)

◼ replace splitters with adders (since now 2 in - 1 out)

Y(J)S DSP Slide 41

2 simple cases

Y(J)S DSP Slide 42

x y

z-1

a0

a1

y x

z-1

a0

a1

a0

x y

z-1

b1

y x

z-1

b1

Simple

MA

Simple

AR

Summary – the 4 transformations

We have learned 4 basic transformations

that create equivalent signal flow graphs

1. transformations that do not change topology

2. changing order of filters

3. identification of identical signal points

and removal of redundant branches

4. the transposition theorem

These transformations can be carried out mechanically

and are used to

◼ reduce the amount of memory needed (we saw such a case!)

◼ reduce the amount of computation needed (we’ll see next time)

This is why graphs are still used in DSP !

Y(J)S DSP Slide 43

Y(J)S DSP Slide 44

Real-time

DSP processing is almost always real-time

Some exceptions:

◼ work on recordings

◼ systems with outputs that are not signals (e.g., detections)

What is real-time ?

For a signal processing system

which inputs an input signal one value at a time

◼ hard real-time: ALWAYS finish computing output before next input

◼ soft real-time: finish computing output on average before next input

store input points that arrive before output ready

exploit some additional delay to output

xn yn
CPU

XTAL

memory

Example

Assume samples arrive 1000 times per second fs = 1000 Hz

then the time between samples is ts = 1 millisecond

So, for hard real-time

all of the processing of a single input sample xn

in order to produce the output sample yn

must take place in less than 1 millisecond

(before the next sample xn+1 arrives)

For soft real-time

sometimes the processing of a single input sample xn

can take longer than 1 millisecond

in which case we store the next sample xn+1

until we output the output sample yn

and then start processing xn+1

Y(J)S DSP Slide 45

Y(J)S DSP Slide 46

DSP = Hard real-time

In DSP we will only deal with hard real-time

because we perform exactly the same computations each time

(there are no conditionals)

For example

◼ MA filters

◼ AR filters (or ARMA)

◼ DFT 𝑋𝑘 = σ𝑛=0
𝑁−1 𝑥𝑛 𝑊𝑁

𝑛𝑘

So, if we miss a deadline once

it doesn’t help to store the next input

since the next input will also take too much time

and the situation will only get worse and worse

=

−+=
M

m

mnmnn ybxy
1

=

−=
L

l

lnln xay
0

Y(J)S DSP Slide 47

Real-time for multi-input

What about the DFT? We can’t perform a DFT on one sample xn

it only makes sense to perform on N samples x0, x1, x2, … xN-1 !

For a system which performs calculation on N inputs

hard real-time means that

we must finish processing all N samples x0, x1, x2, … xN-1

before the next N samples xN, xN+1, xN+2, … x2N-1 arrive!

The requirement is the same as before, but on average

That is, finishing processing of N old samples

during the time N new samples appear

means on average processing a sample in a sampling time

However, in general the processing of N samples

need not reduce to N processing stages each on 1 sample!

Y(J)S DSP Slide 48

Wrong way to process N samples

You might think that we do the following:

◼ time 0: input x0, store in buffer, but don’t perform any processing

◼ time 1: input x1, store in buffer, but don’t perform any processing

◼ …

◼ time N-1: input xN-1, store in buffer

and perform all processing of N samples

before the next sample xN arrives

◼ time N: input xN but don’t perform any processing

◼ etc.

but that would be really hard!

We would need to process N samples in 1 sampling time

although on average we need to process 1 sample per sample time

So, what do we do instead?

Y(J)S DSP Slide 49

Double buffering

What we do is the following:

◼ time 0: input x0 into buffer 1

◼ time 1: input x1 into buffer 1

◼ …

◼ time N-1: input xN-1 into buffer 1 (filling buffer)

and start performing all processing of N samples in buffer 1

◼ time N: input xN into buffer 2 and continue processing buffer 1

◼ time N+1: input xN+1 into buffer 2 and continue processing buffer 1)

◼ some time before time 2N-1: finish processing buffer 1 and output

◼ time 2N-1: input x2N-1 into buffer 1

and start performing all processing of N samples in buffer 2

Trick:

Instead of having to swap write pointers

between buffer 1 and buffer 2

we can use a cyclic buffer

double buffer

1

2

cyclic

buffer1 2

Y(J)S DSP Slide 50

Theorem for real-time

The computational complexity of a real-time system

that performs calculation on N inputs

must not exceed O(N)

In particular the DFT can not be performed in real-time

since 𝑋𝑘 = σ𝑛=0
𝑁−1 𝑥𝑛 𝑊𝑁

𝑛𝑘

requires computing N values X0, X1, …, XN-1

each of which requires N multiplications (n = 0 … N-1)

and is thus O(N2)

What does this theorem mean?

Why can’t we find a fast enough processor

to perform anything we want in real-time?

The meaning of the theorem

Imagine that you need to program some O(N2) process

and as before samples arrive every millisecond

Let’s assume that you are told that N=1024

and that you manage to program you CPU

to finish the processing in less than 1024 milliseconds

But then it turns out that N=2048 is really needed

You now have twice the time to perform the computation – 2048 ms

but because of O(N2) you require 4 times the time – 4096 ms!

So you buy a faster processor and manage to run in real-time

but then if it turns out that N=4096 is needed

no strong enough CPU is available!

But if the complexity is O(N)

then when N is increased from 1024 to 2048

you have twice the time to perform the computation

but only need twice the time!

Y(J)S DSP Slide 51

and the solution is …

DFT and iDFT are so critical in DSP

that without a real-time implementation DSP won’t work!

The Fast Fourier Transform

reduces the O(N2) complexity of the straightforward DFT

to O(N log N)

Note we don’t need to specify the base of the log

since changing base only inserts a multiplicative constant

but we will always assume log2

But O(N log N) is higher than O(N)

and so violates the theorem that real-time requires O(N) !

O(N log N) is not low enough to guarantee real-time for all N

but is sufficiently low to enable even extremely large Ns

DSP processors are rated by

how large an FFT they can perform in real-time!

Y(J)S DSP Slide 52

Y(J)S DSP Slide 53

Warm-up problem #1

Find minimum and maximum of N numbers x0 x1 x2 x3 ... xN-2 xN-1

◼ minimum alone takes N comparisons prove this

◼ maximum alone takes N comparisons prove this

So we can certainly find both with 2N comparisons

But there is a way to find both in 1½ N comparisons

x0 x1 x2 x3 ... xN-2 xN-1

smaller x0 x3 ... xN-1

larger x1 x2 ... xN-2

◼ run over at pairs, separating into larger and smaller

– this takes ½ N comparisons

◼ the minimum must be in the smaller list (why?)

– find it in ½ N comparisons

◼ the maximum must be in the larger list

– find it in ½ N comparisons

◼ altogether 3/2 N comparisons – 25% savings

Can we improve this by further decimation? Why not?

for example

2 remarks

◼ this method uses decimation

that is separating a sequence of N elements

into two subsequences of N/2 elements

based on even and odd elements

◼ although we reserved 2 buffers

smaller x0 x3 ... xN-1

larger x1 x2 ... xN-2

the calculation can be performed in-place

that is, without additional memory !

x0 x1 x2 x3 x4 x5 ... xN-2 xN-1

x0 x1 x3 x2 x5 x4 ... xN-2 xN-1

But to swap two values x0 x1 we do need an additional memory

y←x0 , x0←x1 , x1←y

why don’t we count this?
Y(J)S DSP Slide 54

Y(J)S DSP Slide 55

Warm-up problem #2

Multiply two N digit numbers A and B (w.o.l.g. N binary digits)

we saw that long multiplication is a convolution

and thus takes 2N2 1-digit multiplications

But there is a faster way!

Partition the binary representation of A and B into 2 parts

A7 A6 A5 A4 A3 A2 A1 A0 = AL AR

B7 B6 B5 A4 B3 B2 B1 B0 = BL BR

Now

So partitioning factors reduces to 3/4 N2 saving 25% !

There’s a small problem here – the subtractions might add a bit!

But O(3/4 N2) = O(N2) so we haven’t change the O complexity!

Continued …

But this time we can continue

Now, 3log
2
(N) = Nlog

2
3 Why is alog

k
(b) = blog

k
a ?

So, the complexity is O(Nlog
2

3) O(N1.585)

and O(N1.585) < O(N2) -- the O complexity has been reduced!

This is the Toom-Cook (Karatsuba) algorithm

which was thought to be the fastest way to multiply

until the FFT way was discovered

Y(J)S DSP Slide 56

3 multiplications, each N/2 bits

32 multiplications, each N/4 bits

3 log
2
(N) multiplications, each 1 bit

1

2

log2(N)

0
1

3

9

27

Toom-Cook example

Let’s multiply A=83 times B=122 using Toom Cook

(the answer is 10,126)

A = 0 1 0 1 0 0 1 1 B = 0 1 1 1 1 0 1 0

AL = 0 1 0 1 = 5 BL = 0 1 1 1 = 7

AR = 0 0 1 1 = 3 BR = 1 0 1 0 = 10

AR =

= 5*7 *(256+16) + (5-3) * (10-7) *16 + 3*10*(16+1)

= 35 * 272 + 6 * 16 + 30 * 17

= 35 shl 8 + (35 + 6 + 30) shl 4 + 30 [3 N/2-bit products + 2 shifts + 4 adds]

Now we repeat the process for ALBL

AL = 0 1 0 1 BL = 0 1 1 1

ALL = 0 1 = 1 BLL = 0 1 = 1

ALR = 0 1 = 1 BLR = 1 1 = 3

AL BL = 1*1*(16+4) + (1-1)*(3-1)*4 + 1*3*(4+1) = 20 + 0 + 15 = 35

and the same for the other 2 multiplications

Y(J)S DSP Slide 57

Toom-Cook example (cont.)

(AL-AR) (BR-BL) = 2 * 3 = 0010 * 0011 =

0*0*(16+4) + (0-2)*(3-0)*4 + 2*3*(4+1) = 0 + -24 + 30 = 6

ARBR = 3 * 10 = 0011 * 1010 =

0*2*(16+4) + (0-3)*(2-2)*4 + 3*2*(4+1) = 0 + 0 + 30 = 30

Finally, we go one step further to 9 individual bit multiplications, e.g.,

ALR*BLR = 1 * 3 = 3

ALRL= 0 ALRR = 1 BLRL= 1 BLRR = 1

ALR BLR = ALRL BLRL (4+2) + (ALRL - ALRR)(BLRR -BLRL) + ALRR BLRR (2+1)

= 0 * 1 * 6 + -1 * 0 + 1 * 1 * 3

and similarly for all the others

Y(J)S DSP Slide 58

Decimation and Partition

The two warm-up problems had a strategy in common

If the complexity is C=cN2

then it is worthwhile to divide the input sequence into 2 subsequences

Since performing the operation on each part costs c(N/2)2 = C/4

so the two together cost C/2

If we can glue the two parts back together in less than C/2

then we have a more efficient algorithm!

But the two problems used two different methods of dividing the sequence

Y(J)S DSP Slide 59

Decimation

x0 x2 x4 x6 EVEN

x1 x3 x5 x7 ODD

 LSB sort

Partition

x0 x1 x2 x3 LEFT

x4 x5 x6 x7 RIGHT

 MSB sort

x0 x1 x2 x3 x4 x5 x6 x7

Radix 2

In both warm-up problems, and in the FFT algorithm we will derive

we divide up the sequence into 2 sub-sequences of length N/2

In fact we will require that N be a power of 2

so that we can continue to divide by 2 until we get to units

Such algorithms are called radix-2 FFT algorithms

We could also chose to divide it up into 3 subsequences

or 4 or 5 or any other integer into which N factors

There are special FFT algorithms for powers of other primes

and for semi-primes like N=15=5*3

In fact, only for prime N is no possibility of reducing complexity

Shmuel Winograd discovered FFTs with few multiplications

for various values of N = N1 * N2 where N1 and N2 are coprime

Y(J)S DSP Slide 60

Decimation in Time
Partition in Frequency

What does decimating a signal in the time domain

do to the frequency domain representation ?

Assume that the original signal x0 x1 x2 … xN-1

was sampled at fs

and thus by the sampling theorem

have maximum frequency fN = fs/2

Then the decimated signals, x0 x2 x4 … and x1 x3 x5 …

are sampled at fs/2

and thus have maximum frequency fs/4

So we obtain only the lower ½ of the original spectral width

in other words the LEFT partition of the spectrum

Thus DIT = PIF

We’ll see later the exact relationship between

the lower and upper partitions of the spectrum

Y(J)S DSP Slide 61

Partition in Time

Decimation in Frequency

What does partitioning a signal in the time domain

do to the frequency domain representation ?

Assume that the original signal x0 x1 x2 … xN-1

was sampled at fs and thus has duration T = N ts = N / fs

Then the partitioned signals, x0 x1 … xN/2-1 and xN/2 xN/2+2 … xN-1

have duration N/2 ts = T/2

According to the uncertainty principle

if the time duration Δt is reduced by ½

then the frequency uncertainty Δω is increased by 2

(the frequency resolution is blurred)

So, we can effectively observe only every other spectral line!

Thus PIT = DIF

Y(J)S DSP Slide 62

FFT history

The FFT has been discovered many times

perhaps as early as unpublished 1805 work by Gauss

which predates Fourier!

In 1903 Runge discovered an FFT for N a power of 2

and in 1942 Danielson and Lanczos discovered a O(N log N) DFT

However, credit is now usually given to
◼ John Wilder Tukey – American mathematician/statistician (Princeton)

– who coined the words bit = binary digit and software

◼ James William Cooley – American mathematician / programmer (IBM)

who published in 1965 (in order to avoid patenting)

The Cooley-Tukey algorithm is Decimation In Time

that is, it decimates the signal in the time domain

performing DFTs separately of the evens and the odds

The Sande-Tukey algorithm is Decimation in Frequency

that is, it partitions the signal in the time domain

performing DFTs separately of the 1st half and 2nd half

Y(J)S DSP Slide 63

Before starting

Recall that the DFT is 𝑋𝑘 = σ𝑛=0
𝑁−1 𝑥𝑛 𝑊𝑁

𝑛𝑘

where WN is the Nth root of unity WN = 𝑒−𝑖
2 𝜋

𝑁

We will need three trigonometric identities

1. WN
N = 1 (that’s the definition!)

2. WN
N/2 = -1 (𝑒−𝑖

2 𝜋

𝑁

𝑁

2 = 𝑒−𝑖 𝜋= -1 or)

3. WN
2 = WN/2 (𝑒−𝑖

2 𝜋

𝑁
2
=𝑒

−𝑖
2 𝜋

𝑁/2 or)

They are trigonometric identities

since WN = cos(
2 𝜋

𝑁
) – i sin(

2 𝜋

𝑁
)

Y(J)S DSP Slide 64

WN

WN

WN
2 = WN/2

WN
N/2

Y(J)S DSP Slide 65

DIT (Cooley-Tukey) FFT

Let’s derive the radix-2 DIT FFT algorithm!

We start by decimating the formula for the DFT

 that is, we separate the even terms 2n from the odd terms 2n+1

Now, WN
2nk = WN/2

nk and WN
2n+1 k

= WN
k WN

2nk and so we can rewrite:

DFT of evens DFT of odds

3rd identity

Y(J)S DSP Slide 66

DIT – the first step

So we have found

which shows that the DFT indeed divides up into 2 half-sized DFTs

 and an additional N multiplications by WN
k

 (for k=0…N-1)

This is encouraging, since the glue is O(N) !

The glue factor is usually called the twiddle factor

 and it is the entire difference between the contribution

 of the two decimations to the original DFT

Note that we precompute and store the N twiddle factors WN
k (k=0 … N-1)

 and don’t have to compute them over and over again!

Even Odd

Y(J)S DSP Slide 67

PIF

The next step is to exploit the relationship between

Decimation In Time and Partition In Frequency

What is the connection between

 Xk in the left partition : 0 ≤ k ≤ N/2 – 1

and the corresponding component in the right partition

 Xk in the right partition : N/2 ≤ k ≤ N – 1

Note that we compute exactly the same products

 but add them with different signs + − + − + − + −

2nd identity

WN
N/2 = -1

Y(J)S DSP Slide 68

DIT is PIF

So, we have already reduced the number of multiplications by ½

Now, the products for which (-1)n is negative are odd n

 i.e., exactly those terms in the odd decimation!

So

We can draw this as a DSP diagram in a nice in-place way !

This reminds us of the N=2 butterfly

 but has a twiddle factor before the butterfly

The DIF algorithm/s butterfly

 has a twiddle factor after the butterfly

𝑥𝑘
𝐸 is the DFT sum

don’t confuse it with 𝑥𝑛
𝐸 !

(it should have an intermediate sized x …)

Y(J)S DSP Slide 69

DIT all the way

We have already saved a factor of 2 in the multiplications

but we needn't stop after splitting the original sequence in two !

Each half-length sub-sequence can be decimated again

note that this is in-place!

Assuming that N is a power of 2

we continue decimating until we get to the basic N=2 butterfly

Note that since WN/2 = WN
2 we can draw this

and we only have to keep one table of WN
k

Let’s continue!

Instead of explicitly writing equations for the next step

it is easier to do everything graphically

In order to make things simple, we’ll assume N=8

and explicitly draw out all the steps

– decimate the N=8 sequence into two subsequences of length 4

– decimate each of the sub-sequences of length 4

into two sub-sub-sequences of length 2 (4 altogether)

– perform four basic N=2 butterflies

Let’s see this happen!

Y(J)S DSP Slide 70

DIT N=8 - step 0

Y(J)S DSP Slide 71

DIT N=8 - step 1

Y(J)S DSP Slide 72

in-place!

DIT N=8 - step 1 : 4 butterflies

Y(J)S DSP Slide 73

The butterflies are all entangled – do you see them?

DIT N=8 - step 2

Y(J)S DSP Slide 74

W4
0 = W8

0

W4
1 = W8

2

DIT N=8 - step 2

Y(J)S DSP Slide 75

Note that the second stage butterflies are less entangled!

DIT N=8 - step 3

Y(J)S DSP Slide 76

Complexity

An FFT of length N has

◼ log2(N) stages of butterflies

◼ there are ½N butterflies in each stage, each with

– 1 complex multiply

– 2 complex adds (1 add and 1 subtract)

So there are :

◼ ½ N log2(N) complex multiplications

◼ N log2(N) complex additions

Which is why we say that the complexity is O(N log N)

Y(J)S DSP Slide 77

stage 3 stage 2 stage 1

for N=8 there are 3 stages

Stage 1: 4 butterflies

Stage 2: 2*2 butterflies

Stage 3: 4*1 butterflies

Well, its even a bit less

Actually, some of the multiplications are trivial!
◼ the first stage has one trivial multiplication (WN

0=1)

◼ the 2nd stage has 2 trivial multiplications

◼ …

◼ the last stage has no true multiplications (it has N=2 butterflies!)

So for N=8 there are really only 5 multiplications instead of 8log2(8) = 24 !

Y(J)S DSP Slide 78

Real complexity

So far we have counted complex multiplications and additions

Each complex add entails 2 real adds

Each complex multiply is either:

◼ 4 real multiplies and 2 real adds

(a + i b) (c + i d) = (a*c – b*d) + i (a*d + b*c)

◼ or 3 real multiplies and 5 real adds

M1 = a*c M2 = b*d M3 = (a+b)*(c+d)

(a + i b) (c + i d) = (M1 – M2) + i (M3 – M2 – M1)

So

◼ N log2(N) complex additions = 2N log2(N) real additions

◼ ½ N log2(N) complex multiplications =

– 2N log2(N) real multiplications

and another N log2(N) real additions

or

– 3/2 N log2(N) real multiplications

and another 5/2 N log2(N) real additions
Y(J)S DSP Slide 79

What’s going on?

Y(J)S DSP Slide 80

Our time domain signal is not arranged x0, x1, x2, … !

T
h

e
 o

rd
e

r
o

f
th

e
 i
n

p
u

t
v
a

lu
e

s
 i
s
 v

e
ry

 s
tr

a
n

g
e

!

Bit reversal

Let’s see if we can figure it out! Here for N=16 IN-PLACE!

1st transition is cyclic left shift

2nd transition freezes the LSB and cyclic left shifts the rest

3rd transition freezes the 2 LSBs and cyclic left shifts (swaps) the rest

Altogether we find abcd → bcda → cdba → dcba

The bits of the index have been reversed !

This is called bit-reversal

and DSP processors have a special addressing mode for it

Y(J)S DSP Slide 81

DIT N=8 with bit reversal

Y(J)S DSP Slide 82

The matrix interpretation

The FFT can be understood as a matrix decomposition

that reduces the number of operations to multiply by it

For example, when N=4

The right matrix is a permutation matrix

which carries out the bit reversal

The middle matrix comprises the butterflies

(note the block matrix form)

The left matrix is the twiddle factors

Y(J)S DSP Slide 83

What about the DIF algorithm?

The other radix-2 FFT algorithm could be called Partition in Time

but is always called Decimation In Frequency

To derive it algebraically we need to return to the DFT formula

and partition the sum into high and low halves

We then exploit that DIF to relate Xk (even k) with Xk+1

resulting in butterflies

But instead of working hard we’ll use a trick!

Performing the transposition theorem on the N=8 DIT (and a mirror reflection)

gives us the n=8 DIF!

Y(J)S DSP Slide 84

DIF N=8

DIF butterfly

Y(J)S DSP Slide 85

FIFO FFT

There are many other Fast Fourier Transform algorithms!

What if we need to update the DFT every sample?

In other words, [x0, x1, x2, … xN-1], [x1, x2, x3, … xN], [x2, x3, x4, … xN+1], …

You might already know the trick

on how to update a simple moving average

A1 = x0 + x1 + x2 + … + xN-1

A2 = x1 + x2 + x3 + … + xN = A1 – x0 + xN

A3 = x2 + x3 + x4 + … + xN+1 = A2 – x1 + xN+1

This is implemented by maintaining a FIFO of length N

adding the new input and subtracting the one to be discarded

A similar trick works for weighted MA

if the weights form a geometric progression

A1 = x0 + q x1 + q2 x2 + … + qN-1 xN-1

A2 = x1 + q x2 + q2 x3 + … + qN-1 xN = (A1 – x0)/q + qN-1 xN

A3 = x2 + q x3 + q2 x4 + … + qN-1 xN+1 = (A2 – x1)/q + qN-1 xN+1

Y(J)S DSP Slide 86

FIFO FFT (cont)

The DFT is just such a weighted moving average, with q = WN
k

but when moving from time to time we shouldn’t reset the clock!

So

and hence

requiring only 2 complex additions and one multiplication per k

or altogether N multiplications and 2N additions!

Y(J)S DSP Slide 87

Goertzel’s algorithm

Sometimes we are only interested in

the energy |Xk|
2 of a few of the frequencies k

and computing all N spectral values would be wasteful

For example, when looking for energy at a few discrete frequencies

as in a DTMF detector

For such cases there is an algorithm due to Goertzel (Herzl in Russian)

which is less expensive that running many bandpass filters

The idea is to compute only the Xk needed

by using Horner’s rule for evaluating polynomials (simplify WN
k to W)

This can be further simplified to get a noncomplex recursion

Y(J)S DSP Slide 88

Goertzel 1

To make the recursion look like a convolution we use V = W-1

Changing the overall phase doesn’t change the power spectrum

which using Horner’s rule is coded like this :

Since all the xn are real, at each step Pn – Pn-1V is real

So we implicitly define a new real sequence Qn by Pn = Qn - Qn-1W

Y(J)S DSP Slide 89

Goertzel 2

After a little algebra we find the following recursion:

And the desired energy is given by

where

Y(J)S DSP Slide 90

Using Goertzel

To use Goertzel first decide on how many points N you want to use

Since Goertzel’s algorithm only works for integer digital frequencies

(that is, for analog frequencies f = k/N fs)

larger N allows finer resolution and narrower bandwidth

but also longer computation time and delay

For each frequency that is needed

◼ compute W and A

◼ initialize

◼ iterate N-1 times using A

◼ compute X using W

◼ compute the desired squared power using A

Y(J)S DSP Slide 91

Other radixes

While radix-2 is popular, sometimes other radixes are better

The radix 4 DFT is

which corresponds to radix-4 butterflies

which is more expensive than radix-2

Y(J)S DSP Slide 92

12 complex additions

0 true multiplications

8 complex additions

0 true multiplications

FFT842

But this is only the case for N=4 itself

For powers of 4 there are only log4N = 1/2 log2N stages of butterflies

and each has ¾ N complex multiplications

and so only 3/8 log2N multiplications altogether

which is slightly less than ½ log2N !

But only half of the powers of 2 are also powers of 4

so the algorithm is less applicable …

Similarly, for N=8m there are even fewer stages

but only a quarter of the powers of 2 are powers of 8

So, the FFT842 algorithm performs as many radix-8 stages that it can

it then performs either a radix-4 or a radix-2 stage as needed

It beats out pure radix-2 algorithms on general purpose CPUs

but highly optimized radix-2 are preferable on DSPs

Y(J)S DSP Slide 93

Multiplication by FFT

When learning the Toom-Cook algorithm

we said that for large N the FFT will multiply even faster

That is because O(N log N) < O(Nlog
2
3)

We saw that long multiplication c = a*b is actually 2N convolutions

Hence convolution in the time domain takes O(N2) multiplications

but in the frequency domain it only takes O(N)

So the strategy is instead of convolution c = a * b

◼ use the FFT to convert from the time to the frequency domain

a→A and b→B [O(N log N)]

◼ multiply point by point in the frequency domain C=AB [O(N)]

◼ convert back from the frequency to the frequency domain

C → c [O(N log N)]

Altogether O(N log N) !

Y(J)S DSP Slide 94

Example multiplication (1)

Let’s see how this works for N=4 !

We want to multiply a = a3 a2 a1 a0 by b = b3 b2 b1 b0

We convert the numbers into time domain signals

a0 a1 a2 a3 and b0 b1 b2 b3

Y(J)S DSP Slide 95

Example multiplication (2)

For this simple case we can simply convert all 16 signals

into the frequency domain

To do this we multiply by the DFT matrix

and we find:

Y(J)S DSP Slide 96

Of course, using the W matrix

for conversion is O(N2)

But we would get the same

answers with the FFT

Example multiplication (3)

For example, let’s multiply 2*3

Looking this up we find is indeed S[6]

And similarly for almost all other multiplications that fit into 4 bits

◼ 0 * s = 0

◼ 1 * s = s

◼ 2 * 4 = 8

◼ 2 * 5 = 10

◼ 2 * 6 = 12

◼ 2 * 7 = 14

◼ 3 * 4 = 12

◼ 3 * 5 = 15
Y(J)S DSP Slide 97

Example multiplication (4)

All products that fit into 4 bits work correctly - except 3*3

What’s going on?

Converting back using the iDFT we find (1, 2, 1, 0)

which has a meaningless 2 bit !!!

So, we convert back into binary digits 0121

and perform the carries to get 1001 which is indeed 9

For all products that exceed 4 bits

we can use 8 bits

i.e., signals with 8 time values

Y(J)S DSP Slide 98

Spectral Estimation

Sometimes we only need to know which frequencies are in a signal

For this task the FFT is almost always not the best solution

◼ for unknown frequencies you need to compute the entire spectrum

◼ it does not give accurate frequencies - only bins (depending on N)

There are better ways, for example:

◼ If you know that the signal is a single sinusoid in white noise

or N sinusoids in white noise

then use the Pisarenko Harmonic Distribution

◼ If the signal can be assumed to be generated by an AR filter

solve the Yule-Walker equations

and the pole angles give the frequencies!

Y(J)S DSP Slide 99

Why do we need DSPs?

In this part of the course DSP = Digital Signal Processor

A DSP is a CPU that is used in signal processing applications

Why do we need a DSP? Why not use a regular CPU?

DSPs are optimized for DSP, and thus :

◼ DSPs are physically small

several millimeters as compared to several centimeters

◼ DSPs are much more energy efficient

a DSP may consumes milliwatts

as compared to standard CPUs tens of watts or more

◼ DSPs are less expensive

a DSP may cost several dollars or less

as compared to a CPUs 10s – 100s of dollars or more

Y(J)S DSP Slide 100

Other special processors

DSPs are not the only species of special CPUs

◼ Array Processors specialize in matrix multiplication

◼ FFT chips compute FFT even faster than DSPs

by parallelizing the butterflies (up to a given size)

◼ Systolic Arrays have arrays of simple processors to perform

– matrix operations

– convolutions

– image processing

◼ Graphics Processing Units were designed for graphics displays

but are now used for many parallelizable tasks

such as deep learning

◼ AI processors, to accelerate neutral network training

◼ Network processors are optimal for packet forwarding

Y(J)S DSP Slide 101

Y(J)S DSP Slide 102

DSP Processors
We have seen that the Multiply and Accumulate (MAC) operation

is very prevalent in DSP computation

◼ computation of energy

◼ MA filters

◼ AR filters

◼ correlation of two signals

◼ DFT

A Digital Signal Processor (DSP) is a CPU

that can compute MACs very efficiently

In fact, a DSP computes each individual MAC in 1 CPU clock cycle

Thus an L coefficient MA takes (about) L clock cycles in a DSP

and to perform it in real-time

L must be less than the sample interval (time between 2 inputs)

CPU architecture

The term architecture in CS originated

when IBM designed a series of computers

and desired to use the same (assembly) code on all of them

Like in buildings, architecture means the overall design

without quantitative details

A DSP is a CPU with a specific architecture

designed to be efficient in computation of MACs

The idea is to remove all architectural elements not needed for MACs

(e.g., cache memory) in order to keep size and power minimal

and add new architectural elements that support MACs

We will start with a simple generic CPU architecture

and see what elements we need to add

Y(J)S DSP Slide 103

Y(J)S DSP Slide 104

A simple CPU
We will assume a simplistic model of CPU architecture

◼ the CPU is driven by a crystal (clock)

– faster CPUs can use higher frequency clocks

◼ the CPU connects to external memory

over a bus

◼ the CPU has an ALU with

the usual arithmetic operations

◼ the CPU has registers

which are internal memory locations

upon which the ALU can operate

CPU

XTAL t

x y

memory
bus

ALU with
ADD, MULT,
etc

PC a

registers

x

y z

What is the XTAL for?

All CPUs are driven by an oscillator (usually a piezoelectric crystal)

that supplies periodic pulses (we often say clocks or cycles or ticks)

We quantify efficiency of an operation by the number of ticks it requires

CPUs are rated according to the maximum frequency of the crystal

So, a 3 GHz CPU can compute 3 times as fast as a 1 GHZ CPU

if it is fed by a 3 GHZ crystal (but will be the same if fed by 1 GHz xtal!)

To increase yield, fabricated CPUs dies are tested for speed

and the CPUs rated according to the speed attained

Modern CPUs use microcode

their op-codes do not directly translate into hardware operations

but are actually subroutines in a lower level language

Each individual microcode instruction takes place in on pulse time

Most op-codes require multiple microcode instructions

(e.g., the multiplication op-code might be microcoded Toom-Cook)

Y(J)S DSP Slide 105

Why registers?

CPUs are classified based on the number of addresses in an op-code
◼ 3 address CPUs: A1 = A2 op A3

◼ 2 address CPUs: A1 = A1 op A2

◼ 0 address CPUs (stack machines): op

Early computers allowed arithmetic operations on memory locations

but this severely limits memory space

So a full 3-address architecture

needs an opcode that contains 3 addresses in memory

For example, a computer with 1 MB of memory

requires 3*20bits = 60 bits just to specify memory

and more bits to describe the operation

The alternative is to enable arithmetic only on registers

which are special memory locations internal to the CPU

So, if we have 16 registers

a full 3-address architecture only requires 3*4=12 bits + operation

The cost is the need to load from and store to external memory

Y(J)S DSP Slide 106

Special registers

Not all registers are created equal!

In addition to general purpose registers all CPUs have special ones

There is one special register called the Program Counter

that always holds the address of the next op-code to be performed

It is auto-incremented each operation

but can be overwritten by goto and conditional branch op-codes

In DSPs some registers are accumulators

Accumulators hold larger numbers than regular registers

(e.g., a regular register may be 16 bits in length

and an accumulator 24 bits – 8 guard bits)

Accumulators are used for accumulating

and need the longer length in order not to overflow!

Many CPUs have other special registers

such as stack pointers, loop counters, pointer registers, etc.

Y(J)S DSP Slide 107

Y(J)S DSP Slide 108

High-level MAC loop

The basic MAC loop in high level languages is

(assuming that a and x are in static buffers)

loop over all times n

initialize yn 0

loop over i from 1 to number of coefficients (L)

yn yn + ai * xj (j somehow related to i)

output yn

Efficient low level programming always uses (read) pointers

since array indexing requires wasteful offset calculations

ADDR(a[i]) = ADDR(a[0]) + i * word-length

To explicitly increment the pointers

ADDR(a[i+1]) = ADDR(a[i]) + word-length

For energy and correlation i and j increase together
For convolution i increases and j decreases

Y(J)S DSP Slide 109

Intermediate level MAC loop

So, in some imaginary assembly level language

our MAC loop looks like this:

loop over all times n

clear y

set number-of-iterations to L

loop

decrement number-of-iterations

if number-of-iterations = 0 then terminate loop

update a pointer

update x pointer

multiply z a * x (3-address addressing)

increment y y + z (2-address addressing)

output y

Y(J)S DSP Slide 110

Low level MAC loop

Now let’s use registers! (remember we have a, x, and y registers)

loop over all times n

clear y register

set number-of-iterations to L

loop

decrement number-of-iterations

if number-of-iterations = 0 then terminate loop

update a pointer

load contents of memory addressed by a into register a

update x pointer

load contents of memory addressed by x into register x

multiply z a * x (register operation!)

increment y y + z (register operation!)

store y

Zero-overhead loops

DSPs, like many CPUs, have a zero-overhead loop

This means that we can configure a special loop counter register

that auto-decrements and is tested implicitly

loop over all times n

clear y register

loop number-of-iterations times (zero overhead loop)

update a pointer

load contents of memory addressed by a into register a

update x pointer

load contents of memory addressed by x into register x

multiply z a * x (register operation!)

increment y y + z (register operation!)

store y

Why do we no longer care about the decrement and testing?

Since additional hardware (silicon) takes care of this task

in parallel to other operations!
Y(J)S DSP Slide 111

Y(J)S DSP Slide 112

Cycle counting

We still can’t count clock ticks
since really low level (hardware) operations

need to take the op-code fetch and decode into account

So the clocks operations inside the outer loop look something like this:
1. Update pointer to ai
2. Update pointer to xj
3. LOAD contents of ai into register a

4. LOAD contents of xj into register x

5. Fetch operation (MULT)

6. Decode operation (MULT)

7. MULT a*x with result in register z (MULT really takes >1 clock!)

8. Fetch operation (INC)

9. Decode operation (INC)

10.INC register y by contents of register z

So, it takes at least 10 cycles to perform each MAC using a regular CPU

Our mission (and we have decided to accept it!)

is to reduce this to 1 clock cycle by adding new silicon

This really isn’t right!

We ridiculously assumed each operation takes only 1 cycle

◼ we know multiplication takes many more

◼ addition frequently takes a few cycles

◼ even fetch really requires at least 2 cycles

– 1 to send an address to external memory

– 1 to retrieve the value from the memory

So we are radically underestimating

the number of cycles a regular CPU needs

But we don’t care since this will happen in any CPU

even a DSP!

Y(J)S DSP Slide 113

Y(J)S DSP Slide 114

Step 1 - new opcode
To build a DSP (a 1-cycle MAC CPU)

we need to enhance the basic CPU with new hardware (silicon)

The easiest step is to define a new opcode called MAC

which is what Intel did in the MMX extensions

The upgraded code now looks like this:

1. Update pointer to ai
2. Update pointer to xj
3. LOAD contents of ai into register a

4. LOAD contents of xj into register x

5. Fetch operation (MAC)

6. Decode operation (MAC)

7. MAC a*x with incremented to accumulator y

However 7 > 1, so this is still NOT a DSP !

memory
bus

ALU with
ADD, MULT,
MAC, etc

PC

a

registers

x

accumulator

y

pa

p-registers

px

Y(J)S DSP Slide 115

Step 2 - register arithmetic
The two operations

◼ Update pointer to ai
◼ Update pointer to xj

could be performed in parallel

but both are performed by the ALU

So we add pointer arithmetic units

one for each pointer register

Special sign || used in DSP assembler

to mean operations in parallel

1. Update pointer to ai || Update pointer to xj
2. LOAD contents of ai into register a

3. LOAD contents of xj into register x

4. Fetch operation (MAC)

5. Decode operation (MAC)

6. MAC a*x with incremented to accumulator y

However 6 > 1, so this is still NOT a DSP !

memory
bus

ALU with
ADD, MULT,
MAC, etc

PC

accumulator

y

INC/DEC

x

registers

z

pa

p-registers

px

a

Y(J)S DSP Slide 116

Step 3 - memory banks and buses

We would like to perform the loads in parallel

but we can't since they both have to go over the same bus

So we add another bus

and segment into memory banks

so that there is no contention !

There is dual-port memory

but it has an arbitrator which adds delay

1. Update pointer to ai || Update pointer to xj
2. LOAD ai into a || LOAD xj into x

3. Fetch operation (MAC)

4. Decode operation (MAC)

5. MAC a*x with incremented to accumulator y

However 5 > 1, so this is still NOT a DSP !

bank 1
bus

ALU with
ADD, MULT,
MAC, etc

bank 2
bus

PC

accumulator

y

INC/DEC

a

registers

x

pa

p-registers

px

Harvard architecture

One of the first digital computers

was the Automatic Sequence Controlled Calculator (the Mark I)

that was designed in Harvard by Howard Aiken (and built by IBM)

and employed >750,000 electromechanical components

It was funded by the US Navy

and later enhanced to become the Harvard Mark II, III, and IV

The Harvard computers were used by John von Neumann

for calculations related to the Manhattan project

and was programmed by Grace Hopper (the originator of the word bug)

The overall architecture of the Harvard computers included

◼ a central processing unit

◼ program memory (that is immutable during run-time)

◼ data memory (that can be read and written during run-time)

Y(J)S DSP Slide 117

Von Neumann architecture

The Electronic Numerical Integrator and Computer is often called the 1st

fully programmable, general-purpose, digital computer

It was designed by John Mauchly and J. Presper Eckert

at the University of Pennsylvania, funded by the US army

based on principles described in 1945 by John von Neumann

The overall architecture of the ENIAC included

◼ a central processing unit

◼ a single memory that holds both program op-codes and data

Von Neumann merged program and data memory not only to simplify

but to enable changing the program during run-time (learning)

Turing, after reading von Neumann’s paper,

abstracted these principles into what is called the Turing machine

The von Neumann architecture is used in all modern computers

except DSPs!

Y(J)S DSP Slide 118

Y(J)S DSP Slide 119

Step 4 - Harvard architecture

By adopting Harvard architecture with yet another bus to another memory

we needn't count fetch since it is performed in parallel

We can remove the decode cycle as well

(we’ll see why later)

1. Update pointer to ai || Update pointer to xj
2. LOAD ai into a || LOAD xj into x

3. MAC a*x with incremented to accumulator y

However 3 > 1, so this is still NOT a DSP !

data 1
busALU with

ADD, MULT,
MAC, etc

data 2
bus

program
bus

PC

accumulator

y

INC/DEC

a

registers

x

pa

p-registers

px

Y(J)S DSP Slide 120

Step 5 - pipelines

We seem to be stuck

◼ Update MUST be before Load

◼ Load MUST be before MAC

But we can use a pipelined approach

It takes 1 tick per tap as long as the pipeline is full

altogether it takes n+2 clocks (which is n for large n!)

More generally, a pipeline of depth D takes n+D-1 ticks

U1 U2 U3 U4 U5

L1 L2 L3 L4 L5

M1 M2 M3 M4 M5

t

op

1 2 3 4 5 6 7

Why do we need longer pipelines?

Why would we want D>3 ?

Remember that we said

that we don’t have to count ticks for fetch and decode?

These are actually performed in parallel using a pipeline

Doesn’t a MAC op-code have to multiply before adding?

Yes, but the DSP chip pipelines them

Remember we said that multiplication

really takes many more than 1 cycle?

We can pipeline these cycles to reduce overall execution time

Of course, adding to the pipeline’s depth

◼ increases the delay

◼ makes filling the pipeline more challenging

◼ is subject to diminishing returns (Amdahl’s law)

Y(J)S DSP Slide 121

Pipelines in other CPUs

Many modern CPUs employ pipelines – how are DSPs different?

◼ DSPs employ pipelining as a last resort (when logically stuck)

other CPUs use pipelining as the main (only) parallelization

Thus, non-DSP CPUs can pipeline all stages of a MAC

resulting in lower ticks/tap

but more delay and less determinism

Advanced non-DSP CPUs even employ speculative lookahead

to attempt to keep the pipeline full with conditional branches

◼ DSPs allow programmers to monitor and manipulate the pipeline

for other CPUs pipelining is basically transparent

◼ DSPs actually get more from pipelining

due to memory banks and Harvard architecture

Y(J)S DSP Slide 122

DSP programming

DSP programming is harder than regular programming

(which is why it is today mostly done in India and eastern Europe)

For maximal efficiency :

◼ one needs to program in assembly

◼ one needs to know the DSP’s architecture

◼ one needs to program in parallel assembly

◼ one needs to place data in the correct memory banks

◼ one needs to keep the pipeline full

The last portion often requires painstakingly rewriting and reordering

The usual technique is to start with many NOPs

and iteratively improve the program eliminating pipeline holes

Y(J)S DSP Slide 123

DSP programmers

There are three types of DSP programmers

1. algorithm designers

– use floating point

– care more about theory than real-time

– usually code in MATLAB, Python, C++

2. low-level coders

– structure code for real-time

– convert algorithms from floating point to fixed point

– usually code in C

3. DSP coders

– convert real-time oriented C to parallel assembly

– work directly on the silicon

– program critical routines in DSP assembly language

– program non-critical routines in C with pragmas

Y(J)S DSP Slide 124

Zero-overhead interrupts

How do the input sample values get into the buffers?

All CPUs have (serial or parallel) I/O ports

with memory for one value (bit or byte or whatever)

There are two methods for transferring from an input port to the buffer:

1. Polling – the CPU repeatedly checks if something is in port memory

this is very inefficient since we need to check overly frequently

2. Interrupts – when the input port is ready it raises an interrupt

causing the CPU to perform a context switch

Context switches are very expensive on regular CPUs

since all registers need to be saved and later restored

Most DSPs have a limited zero-overhead interrupt mechanism

where certain registers are copied into shadow registers in 1 cycle

and restored when returning form the interrupt handler

Such handlers are usually limited to a small number of instructions

(just enough to copy and increment the buffer length)

and are themselves non-interruptable
Y(J)S DSP Slide 125

Fixed point

In the real world signal values are real numbers

that can be well approximated by rational numbers

but not usually by integers

Fixed point representation represents a rational number as a integer

by fixing the (binary) decimal point, described as Qm.n notation

We often take m=0 and use Qn (scientific) notation

in which the integer value I represents the rational Q = I / 2n

In each part of the program

all values are represented in the same Qn

but in different parts different Qn are used

Y(J)S DSP Slide 126

sign

bit

m n

Q representation examples

On a machine with 16 bit registers

since

0.100000000000000 = 0.5

01000000.00000000 = 64.0

010000000000.0000 = 1024.0
Y(J)S DSP Slide 127

binary integer Q15 value Q8 value Q4 value

0100000000000000 16384 0.5 64.0 1024.0

0010000000000000 8192 0.25 32.0 512.0

0001000000000000 4096 0.125 16.0 256.0

1100000000000000 -16384 -0.5 -64.0 -1024.0

1010000000000000 -8192 -0.25 -32.0 -512.0

1001000000000000 -4096 -0.125 -16.0 -256.0

Y(J)S DSP Slide 128

Saturation Arithmetic

Many DSPs are fixed point, i.e. handle (2s complement) integers only

Floating point is more expensive and slower

(because of the need to renormalize after calculation)

Floating point numbers can underflow

Fixed point numbers can overflow

We saw that accumulators have guard bits to protect against overflow

When regular fixed point CPUs overflow

◼ numbers greater than MAXINT become negative

◼ numbers smaller than -MAXINT become positive

Fixed point DSPs have a saturation arithmetic mode

◼ numbers larger than MAXINT become MAXINT

◼ numbers smaller than -MAXINT become -MAXINT

this is still an error, but a smaller error

There is a tradeoff between safety from overflow and SNR

What else is special?

We have already mentioned that DSPs support bit-reversed addressing

which speeds calculation of FFTs

However, it is important to consider what DSPs don’t have:

◼ most DSPs run at modest clock rates compared to modern CPUs

(50MHz, 100 MHz, 200 MHz)

◼ many DSPs are fixed point

◼ many DSPs have modest word sizes (16/24 bits, 32/40 bits)

◼ DSPs do not have program or data cache memory

◼ DSPs do not use modern accelerations, e.g., speculative execution

◼ most DSPs do not have a division op-code

◼ DSPs do not have a square-root op-code

That’s why DSPs are amazing at DSP tasks (but miserable at others)

but can be small and require little power

Y(J)S DSP Slide 129

What – no division?

Most DSPs do not have an op-code for division, which is often needed

For example, Automatic Gain Control divides by the RMS

If time is not critical one can use a library routine

but for real-time we need something better

It is enough to know how to invert y = 1/x

for which there are many iterations

that converges to the right answer

The simplest one is

Start with a reasonable guess for y

Loop

y ← y * (2 – y*x)

If you start with a good guess*, this will converge in a few iterations

For AGC, initializing with the previous value, 3 iterations is often enough

* many DSPs have an inverse-seed opcode

Y(J)S DSP Slide 130

Example : how much is ½?

Y(J)S DSP Slide 131

wrong!

attractor

Full division

If you need to divide y = N/D

and don’t want to invert and multiply

then Goldschmidt division uses a similar trick

N’ ← N

D’ ← D

Loop

y ← 2 – D’

N’ ← N’ * y

D’ ← D’ * y

More generally

many operations can be carried out by finding a recursion

for which the answer is an attractive fixed point

Y(J)S DSP Slide 132

Square root

Square roots are often needed in DSP

and some DSPs have a square-root-seed op-code

but none have a full square-root

The most common non-DSP iteration for square root y = x
is the Newton-Raphson iteration which converges quadratically

(and is great for finding square roots in your head!)

y ← square-root-seed(x)

Loop

y ← ½ (y + x/y)

but this requires a division!

Sometimes one can use the fact that log(x) = ½ log(x)

along with algorithms for log and power

For small intervals one can use polynomial approximations

such as y ≈ −0.5973x2 + 1.4043x + 0.1628

But there is often an alternative
Y(J)S DSP Slide 133

Example : how much is √4 ?

Y(J)S DSP Slide 134

Pythagorean addition

In DSP applications square root is mostly required as part of

Pythagorean addition

for which there are approximations such as

where 0.25 < k < 0.31

◼ k=0.267304 gives the exact mean

◼ k=0.300585 gives minimum variance

More importantly the Moler-Morrison algorithm

which requires 2 divisions

and the CORDIC algorithm requires only shift and add

and converges exponentially, gaining 1 bit per iteration

Y(J)S DSP Slide 135

Moler Morrison

p ← max(|x|, |y|)

q ← min(|x|, |y|)

while q > ε

r ← (q/p)2

s ← r / (4 + r)

p ← p + 2sp

q ← sq

return p

Note that in each iteration

◼ sum of squares

remains the same

◼ s decreases

Y(J)S DSP Slide 136

Sine and Cosine

Of course, we need sin and cos all the time!

Non-DSP libraries use Taylor expansions, which are inefficient

However, we most often need to generate both sin(ωn) and cos(ωn)

for increasing n = 0, 1, 2, 3, 4 ...

1. We know how to update sin(ωn) using a difference equation

sin(ω(n+1)) = 2cos(ω) sin(ωn) – sin(ω(n-1))

which requires 2 initial values

2. Both sin and cos together is easy since 𝑒𝑖𝜔(𝑛+1) = 𝑒𝑖𝜔 𝑒𝑖𝜔𝑛

which is the same as the trig identities:

sin(ω(n+1)) = cos(ω) sin(ωn) + sin(ω) cos(ωn)

cos(ω(n+1)) = cos(ω) cos(ωn) - sin(ω) sin(ωn)

So from a single pair we can continue

However, both methods may suffer from error accumulation

Y(J)S DSP Slide 137

CORDIC

The COordinate Rotation for DIgital Computers (CORDIC) algorithm

is an iteration for calculating elementary functions

using only addition and binary shift

It was described in 1959 by Volder (and refined Walther)

and was used in the first scientific hand-held calculator (HP-35)

It computes 1 bit / iteration

and so is great for hardware implementations

but has a conditional and so breaks pipelines

CORDIC can simultaneously compute these pairs of functions

◼ sin(θ) and cos(θ)

◼ sinh(θ) and cosh(θ)

◼ 𝑥2 + 𝑦2 and tan−1(
y

x
)

◼ 𝑥2 − 𝑦2 and tanh−1(
y

x
)

◼ x and ln(x)

◼ 𝑒𝑥 (alone)
Y(J)S DSP Slide 138

The main idea behind
CORDIC for sin/cos

An arbitrary angle q in the 1st quadrant [0,/2] can always be written

as a sum of angles ±𝛼𝑖 where tan(𝛼𝑖) = 2-i

For example,

90o = 𝛼0 + 𝛼1 + 𝛼2+ 𝛼3- 𝛼4+ 𝛼5 + ...

60o = 𝛼0 + 𝛼1 - 𝛼2+ 𝛼3- 𝛼4- 𝛼5 + ...

30o = 𝛼0 - 𝛼1+ 𝛼2- 𝛼3+ 𝛼4+ 𝛼5 + ...

15o = 𝛼0 - 𝛼1 - 𝛼2+ 𝛼3+ 𝛼4- 𝛼5 + ...

Note that multiplication by tan(𝛼𝑖) is actually a right shift

Y(J)S DSP Slide 139

q = (tan-1 2-k)
k=0

k tan-1 2-k

0 45o

1 26.566o

2 14.036o

3 7.125o

4 3.576o

5 1.790o

... ...

CORDIC for sin/cos

Recall that coordinate rotations in the plane are performed by

We can reach an arbitrary point on the unit circle (cos(q), sin(q))

by starting from the point (1,0) [q=0]

and performing a coordinate rotation

The coordinate rotation can be decomposed

into the sum of angles ±𝛼𝑖 = ± tan-1 2-k

So the R(q) can be written as

the product of matrices of the form
Y(J)S DSP Slide 140

θ

(cosθ, sinθ)

(1,0)

No multiplications!

Multiplying by the M matrices

only requires addition/subtractions and left shifts

All that is needed is to finish off is to multiply once by all the cos(𝛼𝑖)

but since cos is an even function we can precompute the product

And instead of multiplying by K at the end

we can simply start with the vector (K,0) instead of (1,0) !

Note that since the multiplicands are all inverse powers of 2

each iteration gives us another bit of accuracy

(exponentially fast convergence!)

We can now give the full CORDIC algorithm

to simultaneously calculate the cos and sin

of any angle in the 1st quadrant

What do we do for the other quadrants?
Y(J)S DSP Slide 141

The CORDIC algorithm

Y(J)S DSP Slide 142

depends on sgn(z)

	Slide 1: Part 3 Signal Processing Algorithms
	Slide 2: What is a graph?
	Slide 3: Topology?
	Slide 4: Some more topology
	Slide 5: Continuous transformations
	Slide 6: Topology and graph theory
	Slide 7: Graph theory in CS
	Slide 8: Signal flow graphs
	Slide 9: The simplest graph
	Slide 10: The next simplest graph
	Slide 11: What does this mean?
	Slide 12: Gain
	Slide 13: Delay
	Slide 14: Drawing points
	Slide 15: Adder
	Slide 16: Subtractor
	Slide 17: The finite difference
	Slide 18: The butterfly
	Slide 19: The basic MA filter
	Slide 20: Basic MA blocks
	Slide 21: Why do we need 4 blocks?
	Slide 22: Commutativity
	Slide 23: General MA
	Slide 24: Tapped delay line
	Slide 25: A data structure!
	Slide 26: How do we fix the adders
	Slide 27: General MA – 1st way
	Slide 28: Iteration – 1st way
	Slide 29: The signal’s point of view
	Slide 30: General MA – 2nd way
	Slide 31: Two ways to MA
	Slide 32: Basic AR block
	Slide 33: How does it work?
	Slide 34: A loop with no delay
	Slide 35: General AR filters
	Slide 36: ARMA filters – stage 1
	Slide 37: How much memory?
	Slide 38: ARMA filters – stage 2
	Slide 39: ARMA filters – stage 3
	Slide 40: ARMA filters stage 3
	Slide 41: The transposition theorem
	Slide 42: 2 simple cases
	Slide 43: Summary – the 4 transformations
	Slide 44: Real-time
	Slide 45: Example
	Slide 46: DSP = Hard real-time
	Slide 47: Real-time for multi-input
	Slide 48: Wrong way to process N samples
	Slide 49: Double buffering
	Slide 50: Theorem for real-time
	Slide 51: The meaning of the theorem
	Slide 52: and the solution is …
	Slide 53: Warm-up problem #1
	Slide 54: 2 remarks
	Slide 55: Warm-up problem #2
	Slide 56: Continued …
	Slide 57: Toom-Cook example
	Slide 58: Toom-Cook example (cont.)
	Slide 59: Decimation and Partition
	Slide 60: Radix 2
	Slide 61: Decimation in Time Partition in Frequency
	Slide 62: Partition in Time Decimation in Frequency
	Slide 63: FFT history
	Slide 64: Before starting
	Slide 65: DIT (Cooley-Tukey) FFT
	Slide 66: DIT – the first step
	Slide 67: PIF
	Slide 68: DIT is PIF
	Slide 69: DIT all the way
	Slide 70: Let’s continue!
	Slide 71: DIT N=8 - step 0
	Slide 72: DIT N=8 - step 1
	Slide 73: DIT N=8 - step 1 : 4 butterflies
	Slide 74: DIT N=8 - step 2
	Slide 75: DIT N=8 - step 2
	Slide 76: DIT N=8 - step 3
	Slide 77: Complexity
	Slide 78: Well, its even a bit less
	Slide 79: Real complexity
	Slide 80: What’s going on?
	Slide 81: Bit reversal
	Slide 82: DIT N=8 with bit reversal
	Slide 83: The matrix interpretation
	Slide 84: What about the DIF algorithm?
	Slide 85: DIF N=8
	Slide 86: FIFO FFT
	Slide 87: FIFO FFT (cont)
	Slide 88: Goertzel’s algorithm
	Slide 89: Goertzel 1
	Slide 90: Goertzel 2
	Slide 91: Using Goertzel
	Slide 92: Other radixes
	Slide 93: FFT842
	Slide 94: Multiplication by FFT
	Slide 95: Example multiplication (1)
	Slide 96: Example multiplication (2)
	Slide 97: Example multiplication (3)
	Slide 98: Example multiplication (4)
	Slide 99: Spectral Estimation
	Slide 100: Why do we need DSPs?
	Slide 101: Other special processors
	Slide 102: DSP Processors
	Slide 103: CPU architecture
	Slide 104: A simple CPU
	Slide 105: What is the XTAL for?
	Slide 106: Why registers?
	Slide 107: Special registers
	Slide 108: High-level MAC loop
	Slide 109: Intermediate level MAC loop
	Slide 110: Low level MAC loop
	Slide 111: Zero-overhead loops
	Slide 112: Cycle counting
	Slide 113: This really isn’t right!
	Slide 114: Step 1 - new opcode
	Slide 115: Step 2 - register arithmetic
	Slide 116: Step 3 - memory banks and buses
	Slide 117: Harvard architecture
	Slide 118: Von Neumann architecture
	Slide 119: Step 4 - Harvard architecture
	Slide 120: Step 5 - pipelines
	Slide 121: Why do we need longer pipelines?
	Slide 122: Pipelines in other CPUs
	Slide 123: DSP programming
	Slide 124: DSP programmers
	Slide 125: Zero-overhead interrupts
	Slide 126: Fixed point
	Slide 127: Q representation examples
	Slide 128: Saturation Arithmetic
	Slide 129: What else is special?
	Slide 130: What – no division?
	Slide 131: Example : how much is ½?
	Slide 132: Full division
	Slide 133: Square root
	Slide 134: Example : how much is √4 ?
	Slide 135: Pythagorean addition
	Slide 136: Moler Morrison
	Slide 137: Sine and Cosine
	Slide 138: CORDIC
	Slide 139: The main idea behind CORDIC for sin/cos
	Slide 140: CORDIC for sin/cos
	Slide 141: No multiplications!
	Slide 142: The CORDIC algorithm

