Part 3 Signal Processing Algorithms

0368.3464
עיבוד ספרתי של אותות
Digital Signal Processing for Computer Science

AKA
Digital Signal Processing - Algorithms and Applications

What is a graph?

A graph is a collection of

- points (AKA vertices, nodes)
- lines (AKA edges, links) between the points

In DSP we will only use digraphs = directed graphs where every line has a direction

Graph theory was invented by Euler to solve the puzzle of the Königsberg bridges

But first he had to invent topology
There is an Euler cycle
iff every point has even degree

topologically equivalent map

Topology?

Topology is a generalization of geometry

- in geometry congruence allows translation and rotation

Side Side Side
Side Angle Side
Angle Side Angle
but not
Angle Angle Angle

- in affine geometry we also allow scale changes (zoom)

1

- in projective geometry we allow any transformation from lines to lines (maintains collinearity) here all triangles are equivalent, but squares are different
- in topology we allow any transformation
that doesn't tear or glue together space (think of drawing on a rubber sheet)

Some more topology

Topology's equivalence relationship is called homeomorphism
A homeomorphism is a continuous function from space to space
with a continuous inverse function
In topology distance, angle, and linearity are meaningless

- triangle $=$ square $=$ polygon $=$ circle
- all curves that don't cross themselves are equivalent
- a figure 8 is not the same as a circle (would require a tear) (the number of holes is preserved)
- in 3D topology a sphere is equivalent to a cube but not to a donut

What Euler realized is that the existence of a Euler cycle is independent of the bridge location and orientation
The bridge puzzle is truly a topological problem

Continuous transformations

Continuously morph a square into a circle (and back again)

Continuously triangle into a square (and back again)

Topology and graph theory

In graph theory all we care about is connectivity which point is connected to which point
We don't care about the length or angle of the line or even if it is a line
The meaning of a graph is purely topological
So all the following digraphs are equivalent:

But not

or

Graph theory in CS

In the early days of computer science programs were represented by block diagrams which are a kind of graph
This representation has been mostly abandoned for several reasons:

- block diagrams are actually a programming language so using them in addition to code means maintaining 2 code different sets
- block diagrams are tightly coupled to imperative program with goto statements which has been disparaged
- block diagrams are purely documentation and add nothing positive to the programming process
- block diagrams only describe algorithms Wirth's Law

Signal flow graphs

Shannon introduced signal flow graphs in which

- the points represent signals
- the lines (and things on lines) represent signal processing functions

These graphs capture both

- algorithms and
- data structures

In addition to their purely documentary function signal flow graphs are useful because of graphical mechanisms for simplifying graphs lowering computational power or memory requirements

The simplest graph

The simplest signal flow graph has 1 point and represents a signal

When we write a letter next to a point (below, left, right, above) it represents the name of the signal (here: x !)

When interpreting signal flow graphs
it is often useful to ask - what is the value of the signals at time n ?
So we sometime draw $\mathbf{x}_{\mathbf{n}}^{\bullet}$
But don't be confused!
The point represents the signal $X_{n} \forall n=-\infty \ldots+\infty$ not a particular value

The next simplest graph

The simplest nontrivial signal flow graph has 2 points and one line and it represents signal identity $\left(y=x\right.$, i.e., $\left.\forall n=-\infty \ldots+\infty \quad y_{n}=x_{n}\right)$
identity = assignment

Of course, due to the topological nature of graphs we could have drawn this graph in many other ways

And in this case only we can also reverse the line direction

Note that we will often neglect to draw the point when it is obvious (i.e., at the end of a line)
(we will later only draw points in specific places ...)

What does this mean?

We can figure this out by naming the unlabeled point w and breaking the graph down into three parts

So $w=x$ and $y=w=x$ and also $z=w=x$
WARNING! Do not think of this as electrical currents in which case $y=x / 2$ and $z=x / 2$!

This graph is called the splitter
Note that the splitter always has

1 signal going in and 2 signals coming out

Gain

The simplest signal processing is the gain $y=g \times\left(\forall n=-\infty \ldots+\infty \quad y_{n}=g x_{n}\right)$ We draw this by putting the letter \mathbf{g} next to the arrow

Note that (for $\mathrm{g} \neq 1$) this is very different from

but the same as

Be careful!

A letter near a point tells you the signal's name but a letter near an arrow represents a gain

Delay

We have seen that the unit delay is very important in DSP and so it deserves its own graphical symbol

and as usual we can draw this in various orientations, such as

is

Drawing points

We will always explicitly draw the point after a delay element

Since this point represents a signal value that must be remembered that is, a memory location

For this reason we frequently use the term memory point
Marking memory points
help us count up how much memory is required
For example, we see that $\mathrm{y}=\hat{\mathrm{z}}^{-3} \mathrm{x}$ requires 3 memory points

Note: We will sometimes temporarily draw and label points just in order to understand the graph

Adder

Signal addition is very important as well!
We define the two-signal adder which of course means

$$
\forall n=-\infty \ldots+\infty \quad z_{n}=x_{n}+y_{n}
$$

Note that the adder always has

2 signals going in and 1 signal coming out
As usual, we could draw the adder in many ways!

Subtractor

For convenience we also define the 2-signal subtractor

Note the position of the minus sign
It can be at either (or both) of the adder's inputs!

Although we could have used

The finite difference

We can now use what we have learned so far to draw a useful graph the finite difference $y=\widehat{\Delta} x \quad$ (i.e., $\left.y_{n}=x_{n}-x_{n-1}\right)$

To see that this is correct label needed points (not just the memory points) with their value at time n

The butterfly

Remember the DFT for $\mathrm{N}=2$?

$$
\begin{aligned}
& X_{0}=x_{0}+x_{1} \\
& X_{1}=x_{0}-x_{1}
\end{aligned}
$$

We can draw this as a DSP graph
(it is not really a signal flow graph!)

Rotating this 90 degrees and using a lot of imagination one can understand why this is called a butterfly

The basic MA filter

Let's draw something even more interesting

To see that this is indeed the MA filter label all these points

Basic MA blocks

Here are 4 interesting ways to draw this same simple MA filter What transformations brings us from one to the other?

Why do we need 4 blocks?

Products all parallel -
easy to iterate (we'll see later)

Delay element adjacent to adder

Products next to adder can make memoryless chip

Products all parallel -
easy to iterate (we'll see later)
y line is different height from x line

Commutativity

Note that it is obvious that the gain g and the delay $\hat{\mathrm{z}}^{-1}$ commute but this is true more generally for any two filters
While somewhat complicated to prove in the time domain it is simple to see in the frequency (or z) domain
Since filters obey $Y(\omega)=H(\omega) X(\omega)$
two filters - f and g - in series obey $Y(\omega)=G(\omega) F(\omega) X(\omega)$

while in the opposite order $Y(\omega)=F(\omega) G(\omega) X(\omega)$

which is the same thing since functions commute!
Show 2 systems that do not commute

General MA

Now we consider the general MA filter with L coefficients

$$
y_{n}=\sum_{l=0}^{L} a_{l} x_{n-l}
$$

We would like to draw

but we only defined 2-input adders !

Tapped delay line

Before correcting this, note that top of this diagram has an interesting analog interpretations
Engineers think of this as a tapped delay line
similar to a length of cable with finite transmission velocity
But since information travels in (copper or optical) cables
at $2 / 3$ the speed of light (200 meters per $\mu \mathrm{sec}$)
you need a long cable for significant delay !

A data structure!

We will think of this differently (and find a data structure in addition to the algorithm)
Considering the memory points from some time
we find a data structure (assume $L=8$)
with the following time varying contents

We see that values that enter first from the left
exit (are discarded) first to the right
so this is a FIFO buffer

How do we fix the adders

So, were we to use an N -input adder
we would have a FIFO, multiplications, and an adder

Let's perform the additions one at a time!

General MA - $1^{\text {st }}$ way

$$
y_{n}=\sum_{\sum_{n}}^{n} a x_{n-1}
$$

We still have the tapped delay line = FIFO as a data structure but now we perform Multiplication + Accumulations (MACs)
We have previously mentioned how important MACs are in DSP
Another way of looking at this is iteration on one of our basic MA blocks Which one?

Iteration - $1^{\text {st }}$ way

$$
y_{n}=\sum_{n=0}^{L} a_{i} x_{n-1}
$$

We iterate on basic block D

So this graph tells us

1. Data structure = FIFO
2. Algorithm = iteration over MA block D

The signal's point of view

We saw how to look at this from the processing point of view
Sometimes it is useful to look at graphs from the signal's point of view!

- the signal enters the filter and is split into 2 replicas : A and B
- gain is applied to replica A, replica B is delayed
- replica B is split in two : C and D
- gain is applied to replica C , which then is added to replica A
- etc.

General MA - $2^{\text {nd }}$ way

This isn't the only way to compute a general MA Here we see an alternative It still uses a FIFO data structure (which is now vertical - but who cares?) Which basic MA block is used here?

So this graph tells us

1. Data structure $=$ FIFO
2. Algorithm = iteration over MA block A

Two ways to MA

Is there any difference between these two ways?

- the $1^{\text {st }}$ way MACs from the new x backward

$$
a_{0} x_{n}+a_{1} x_{n-1}+\ldots+a_{L} x_{n-L}
$$

- the $2^{\text {nd }}$ way MACs from the earliest x forward

$$
a_{L} x_{n-L}+\ldots+a_{1} x_{n-1}+a_{0} x_{n}
$$

Theoretically there is no difference (addition is commutative)
but in practice there may be
Given a list of numbers sorted from smallest to largest
 which way is most accurate to sum?

Basic AR block

What is the graph for the basic AR filter $y_{n}=x_{n}+b y_{n-1}$? Here is one way:

Note that for the first time we see a loop in the graph in none of the MA filters was there a loop! Whenever there is a loop, there is recursion (AR)
Put another way - loops correspond to poles

How does it work?

As usual - let's label points to see why this works

We don't worry about signals from the past influencing the output now but non-causal loops can be paradoxical (like time travel)

This is just one way the draw the simple AR there are 4 basic blocks here too
Can you find them?

A loop with no delay

It can be useful (but dangerous) to make a loop with no delay Consider an amplifier
which has some of the output fed back into the input

Then instead of $y=g x$ we have $y=g(x+b y)$ or $y-b g y=g x$ and hence $\mathrm{y}=\frac{\mathrm{g}}{1-\mathrm{bg}} \mathrm{x}$
So the feedback increases the amplifier's gain when $b<1 / g$ but explodes as $b \rightarrow 1 / g$
We see here the connection between loops and poles!
The same thing happens with delay
but only for certain frequencies!

General AR filters

Here are two ways to implement the general AR filter

$$
y_{n}=x_{n}+\sum_{m=1}^{m} b_{m} y_{n-m}
$$

Explain why these indeed implement the AR Is there any difference between these two ways?

ARMA filters - stage 1

What do we do about ARMA filters?

$$
y_{n}=\sum_{l=0}^{L} a_{l} x_{n-l}+\sum_{m=1}^{M} b_{m} y_{n-m}
$$

The straightforward implementation would be

- perform the MA portion using one of our MA implementations
- perform the AR portion using one of our AR implementations
- add the two together

$$
\begin{gathered}
y_{n}=\sum_{l=0}^{L} a_{l} x_{n-l}+\sum_{m=1}^{M} b_{m} y_{n-m} \\
\mathbf{M A}+\mathbf{A R}
\end{gathered}
$$

How much memory?

$y_{n}=\sum_{n=0}^{t} a_{1} x_{n-1}+\sum_{n=1}^{n} b_{m} y_{n-m}$
By observing the graph we see that L+M memory points are used

Without limiting generality
we can say 2 L memory points and assume L=M

Why? Take max(L,M)
and pad the other with zeros
We will now use graph theory to reduce the number of needed memory points

ARMA filters - stage 2

$y_{n}=\sum_{n=0}^{t} a_{n} x_{n-1}+\sum_{n=1}^{n} b_{m} y_{n-m}$
The graph has two filters in series

- 1 MA and 1 AR

Since any 2 filters commute we can exchange their order
We obtain this new graph
Note that the signal w between the 2 filters is different from the signal u !

ARMA filters - stage 3

$y_{n}=\sum_{n=0}^{t} a_{1} x_{n-1}+\sum_{n=1}^{m} b_{m} y_{n-m}$
We see that there are points representing the same signal!
All of these are
So we can combine the memory locations and remove un-needed delays

This is a new graph transformation

ARMA filters stage 3

$y_{n}=\sum_{l=0}^{L} a_{l} x_{n-1}+\sum_{m=1}^{M} b_{m} y_{n-m}$

We now require only L memory points instead of 2L memory points

A reduction to 50% !

The transposition theorem

Another transformation that creates a new graph
that is equivalent in functionality to the original one is given by the Transposition theorem

This transformation is more complex
since multiple operations are carried out at the same time

- exchange input(s) and output(s)
- reverse direction of all arrows
- replace adders with splitters (since now 1 in - 2 out)
- replace splitters with adders (since now 2 in - 1 out)

2 simple cases

Summary - the 4 transformations

We have learned 4 basic transformations that create equivalent signal flow graphs

1. transformations that do not change topology
2. changing order of filters
3. identification of identical signal points and removal of redundant branches
4. the transposition theorem

These transformations can be carried out mechanically and are used to

- reduce the amount of memory needed (we saw such a case!)
- reduce the amount of computation needed (we'll see next time)

This is why graphs are still used in DSP!

Real-time

DSP processing is almost always real-time
Some exceptions:

- work on recordings
- systems with outputs that are not signals (e.g., detections)

What is real-time?
For a signal processing system
which inputs an input signal one value at a time

- hard real-time: ALWAYS finish computing output before next input
- soft real-time: finish computing output on average before next input store input points that arrive before output ready exploit some additional delay to output

Example

Assume samples arrive 1000 times per second $f_{s}=1000 \mathrm{~Hz}$ then the time between samples is $t_{s}=1$ millisecond
So, for hard real-time
all of the processing of a single input sample x_{n} in order to produce the output sample y_{n} must take place in less than 1 millisecond (before the next sample $\mathrm{x}_{\mathrm{n}+1}$ arrives)

For soft real-time
sometimes the processing of a single input sample x_{n} can take longer than 1 millisecond in which case we store the next sample x_{n+1} until we output the output sample y_{n}
and then start processing $\mathrm{x}_{\mathrm{n}+1}$

DSP = Hard real-time

In DSP we will only deal with hard real-time because we perform exactly the same computations each time (there are no conditionals)

For example

- MA filters $y_{n}=\sum_{t=0}^{t} a_{t} x_{n-1}$
- AR filters $y_{n}=x_{n}+\sum_{n=1}^{n} b_{m} y_{n-m} \quad$ (or ARMA)
- DFT $\quad X_{k}=\sum_{n=0}^{N-1} x_{n} W_{N}^{n k}$

So, if we miss a deadline once
it doesn't help to store the next input
since the next input will also take too much time and the situation will only get worse and worse

Real-time for multi-input

What about the DFT? We can't perform a DFT on one sample x_{n} it only makes sense to perform on N samples $x_{0}, x_{1}, x_{2}, \ldots x_{N-1}$!
For a system which performs calculation on N inputs hard real-time means that we must finish processing all N samples $x_{0}, x_{1}, x_{2}, \ldots x_{N-1}$ before the next N samples $x_{N}, x_{N+1}, x_{N+2}, \ldots x_{2 N-1}$ arrive!
The requirement is the same as before, but on average
That is, finishing processing of N old samples during the time N new samples appear
means on average processing a sample in a sampling time
However, in general the processing of N samples need not reduce to N processing stages each on 1 sample!

Wrong way to process N samples

You might think that we do the following:

- time 0: input x_{0}, store in buffer, but don't perform any processing
- time 1 : input x_{1}, store in buffer, but don't perform any processing
- time N -1: input $\mathrm{x}_{\mathrm{N}-1}$, store in buffer and perform all processing of N samples
before the next sample x_{N} arrives
- time N : input x_{N} but don't perform any processing
- etc.
but that would be really hard!
We would need to process N samples in 1 sampling time although on average we need to process 1 sample per sample time

So, what do we do instead?

Double buffering

What we do is the following:

- time 0 : input x_{0} into buffer 1
- time 1: input x_{1} into buffer 1
- time N -1: input $\mathrm{X}_{\mathrm{N}-1}$ into buffer 1 (filling buffer) and start performing all processing of N samples in buffer 1
- time N : input x_{N} into buffer 2 and continue processing buffer 1
- time $N+1$: input x_{N+1} into buffer 2 and continue processing buffer 1)
- some time before time $2 \mathrm{~N}-1$: finish processing buffer 1 and output
- time $2 \mathrm{~N}-1$: input $\mathrm{x}_{2 \mathrm{~N}-1}$ into buffer 1 and start performing all processing of N samples in buffer 2

Trick:
Instead of having to swap write pointers between buffer 1 and buffer 2 we can use a cyclic buffer

Theorem for real-time

The computational complexity of a real-time system that performs calculation on N inputs must not exceed $\mathrm{O}(\mathrm{N})$
In particular the DFT can not be performed in real-time
since $X_{k}=\sum_{n=0}^{N-1} x_{n} W_{N}^{n k}$
requires computing N values $X_{0}, X_{1}, \ldots, X_{N-1}$
each of which requires N multiplications ($\mathrm{n}=0 \ldots \mathrm{~N}-1$)
and is thus $\mathrm{O}\left(\mathrm{N}^{2}\right)$
What does this theorem mean?
Why can't we find a fast enough processor to perform anything we want in real-time?

The meaning of the theorem

Imagine that you need to program some $\mathrm{O}\left(\mathrm{N}^{2}\right)$ process and as before samples arrive every millisecond
Let's assume that you are told that $\mathrm{N}=1024$ and that you manage to program you CPU to finish the processing in less than 1024 milliseconds
But then it turns out that $N=2048$ is really needed
You now have twice the time to perform the computation - 2048 ms but because of $\mathrm{O}\left(\mathrm{N}^{2}\right)$ you require 4 times the time -4096 ms !
So you buy a faster processor and manage to run in real-time but then if it turns out that $\mathrm{N}=4096$ is needed no strong enough CPU is available!
But if the complexity is $\mathrm{O}(\mathrm{N})$
then when N is increased from 1024 to 2048
you have twice the time to perform the computation but only need twice the time!

and the solution is ...

DFT and iDFT are so critical in DSP
that without a real-time implementation DSP won't work!
The Fast Fourier Transform reduces the $\mathrm{O}\left(\mathrm{N}^{2}\right)$ complexity of the straightforward DFT to $\mathrm{O}(\mathrm{N} \log \mathrm{N})$

Note we don't need to specify the base of the log
since changing base only inserts a multiplicative constant but we will always assume $\log _{2}$

But $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ is higher than $\mathrm{O}(\mathrm{N})$ and so violates the theorem that real-time requires $\mathrm{O}(\mathrm{N})$!
$\mathrm{O}(\mathrm{N} \log \mathrm{N})$ is not low enough to guarantee real-time for all N but is sufficiently low to enable even extremely large Ns

DSP processors are rated by how large an FFT they can perform in real-time!

Warm-up problem \#1

Find minimum and maximum of N numbers $x_{0} x_{1} x_{2} x_{3} \quad \ldots \quad x_{N-2} x_{N-1}$

- minimum alone takes N comparisons prove this
- maximum alone takes N comparisons prove this

So we can certainly find both with 2 N comparisons
But there is a way to find both in $11 / 2 \mathrm{~N}$ comparisons

- run over at pairs, separating into larger and smaller
- this takes $1 / 2 \mathrm{~N}$ comparisons
- the minimum must be in the smaller list (why?)
- find it in $1 / 2 \mathrm{~N}$ comparisons
- the maximum must be in the larger list
- find it in $1 / 2 \mathrm{~N}$ comparisons
- altogether $3 / 2 \mathrm{~N}$ comparisons -25% savings

Can we improve this by further decimation? Why not?

2 remarks

- this method uses decimation that is separating a sequence of N elements into two subsequences of $\mathrm{N} / 2$ elements
based on even and odd elements
- although we reserved 2 buffers

$$
\begin{array}{lllll}
\text { smaller } & \mathrm{x}_{0} & \mathrm{x}_{3} & \ldots & \mathrm{x}_{\mathrm{N}-1} \\
\text { larger } & \mathrm{x}_{1} & \mathrm{x}_{2} & \ldots & \mathrm{x}_{\mathrm{N}-2}
\end{array}
$$

the calculation can be performed in-place
that is, without additional memory !

But to swap two values $x_{0} x_{1}$ we do need an additional memory

$$
y \leftarrow x_{0}, x_{0} \leftarrow x_{1}, x_{1} \leftarrow y
$$

why don't we count this?

Warm-up problem \#2

Multiply two N digit numbers A and B (w.o.l.g. N binary digits) we saw that long multiplication is a convolution and thus takes $2 \mathrm{~N}^{2} 1$-digit multiplications
But there is a faster way!
Partition the binary representation of A and B into 2 parts

$$
\begin{array}{ll}
\text { A7 A6 A5 A4 } & \text { A3 A2 A1 A0 }=A_{L} A_{R} \\
\text { B7 B6 B5 A4 } & \text { B3 B2 B1 B0 }=B_{L} B_{R}
\end{array}
$$

Now

$$
\begin{aligned}
A & =A_{L} 2^{\frac{N}{2}}+A_{R} \\
B & =B_{L} 2^{\frac{N}{2}}+B_{R} \\
C & =A_{L} B_{L} 2^{N}+\left(A_{L} B_{R}+A_{R} B_{L}\right) 2^{\frac{N}{2}}+A_{R} B_{R} \\
& =A_{L} B_{L}\left(2^{N}+2^{\frac{N}{2}}\right)+\left(A_{L}-A_{R}\right)\left(B_{R}-B_{L}\right) 2^{\frac{N}{2}}+A_{R} B_{R}\left(2^{\frac{N}{2}}+1\right)
\end{aligned}
$$

So partitioning factors reduces to $3 / 4 \mathrm{~N}^{2}$ saving 25% !
There's a small problem here - the subtractions might add a bit!
But $\mathrm{O}\left(3 / 4 \mathrm{~N}^{2}\right)=\mathrm{O}\left(\mathrm{N}^{2}\right)$ so we haven't change the O complexity!

Continued ...

But this time we can continue

Now, $3^{\log _{2}(\mathrm{~N})}=\mathrm{N}^{\log _{2} 3}$ Why is $\mathrm{a}^{\log _{k}(\mathrm{~b})}=\mathrm{b}^{\log _{k} \mathrm{a}}$?
So, the complexity is $\mathrm{O}\left(\mathrm{N}^{\left.\log _{2}{ }^{3}\right) \approx \mathrm{O}\left(\mathrm{N}^{1.585}\right)}\right.$ and $\mathrm{O}\left(\mathrm{N}^{1.585}\right)<\mathrm{O}\left(\mathrm{N}^{2}\right)$-- the O complexity has been reduced!

This is the Toom-Cook (Karatsuba) algorithm
which was thought to be the fastest way to multiply until the FFT way was discovered

Toom-Cook example

Let's multiply $A=83$ times $B=122$ using Toom Cook (the answer is 10,126)

$$
\begin{aligned}
\mathrm{A} & =01010011 \quad \mathrm{~B}=01111010 \\
\mathrm{~A}_{\mathrm{L}} & =0101=5 \quad \mathrm{~B}_{\mathrm{L}}=0111=7 \\
\mathrm{~A}_{\mathbf{R}} & =0011=3 \quad \mathrm{~B}_{\mathrm{R}}=1010=10 \\
\mathrm{AR} & =A_{L} B_{L}\left(2^{N}+2^{\frac{N}{2}}\right)+\left(A_{L}-A_{R}\right)\left(B_{R}-B_{L}\right) 2^{\frac{N}{2}}+A_{R} B_{R}\left(2^{\frac{N}{2}}+1\right) \\
& =5^{*} 7^{*}(256+16)+\quad(5-3) \quad{ }^{*}(10-7){ }^{* 16+3^{*} 10^{*}(16+1)} \\
& =35 * 272 \quad+\quad 6 \quad{ }^{*} 16+30 * 17 \\
& =35 \text { shl } 8+(35+6+30) \text { shl } 4+30 \quad[3 N / 2 \text {-bit products }+2 \text { shifts }+4 \text { adds }]
\end{aligned}
$$

Now we repeat the process for $A_{L} B_{L}$
$A_{L}=0101 \quad B_{L}=0111$
$A_{L L}=01=1 \quad B_{L L}=01=1$

$A_{L R}=01=1 \quad B_{L R}=11=3$
$A_{L} B_{L}=1^{*} 1^{*}(16+4)+(1-1)^{*}(3-1)^{*} 4+1^{*} 3^{*}(4+1)=20+0+15=35$
and the same for the other 2 multiplications

Toom-Cook example (cont.)

$$
\begin{aligned}
& \left(A_{L}-A_{R}\right)\left(B_{R}-B_{L}\right)=2 * 3=0010 * 0011= \\
& 0^{*} 0^{*}(16+4)+(0-2)^{*}(3-0)^{*} 4+2^{*} 3^{*}(4+1)=0+-24+30=6 \\
& A_{R} B_{R}=3 * 10=0011 * 1010= \\
& 0^{*} 2^{*}(16+4)+(0-3)^{*}(2-2)^{*} 4+3^{*} 2^{*}(4+1)=0+0+30=30
\end{aligned}
$$

Finally, we go one step further to 9 individual bit multiplications, e.g.,

$$
\begin{aligned}
A_{L R} B_{L R} & =A_{L R L} B_{L R L}(4+2)+\left(A_{L R L}-A_{L R R}\right)\left(B_{L R R}-B_{L R L}\right)+A_{L R R} B_{L R R}(2+1) \\
& =0 * 1 * 6+1+1 * 3
\end{aligned}
$$

and similarly for all the others

$$
\begin{aligned}
& A_{L R}{ }^{*} B_{L R}=1 * 3=3 \\
& A_{\text {LRL }}=0 A_{\text {LRR }}=1 \quad B_{\text {LRL }}=1 B_{\text {LRR }}=1
\end{aligned}
$$

Decimation and Partition

The two warm-up problems had a strategy in common
If the complexity is $\mathrm{C}=\mathrm{cN}^{2}$
then it is worthwhile to divide the input sequence into 2 subsequences
Since performing the operation on each part costs $c(N / 2)^{2}=C / 4$ so the two together cost C/2
If we can glue the two parts back together in less than $\mathrm{C} / 2$ then we have a more efficient algorithm!
But the two problems used two different methods of dividing the sequence

$$
x_{0} x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7}
$$

Decimation

$x_{0} x_{2} x_{4} x_{6}$	EVEN
$x_{1} x_{3} x_{5} x_{7}$	ODD
LSB sort	

Partition
$x_{0} x_{1} x_{2} x_{3}$ LEFT
$\mathrm{X}_{4} \mathrm{X}_{5} \mathrm{X}_{6} \mathrm{x}_{7}$ RIGHT
MSB sort

Radix 2

In both warm-up problems, and in the FFT algorithm we will derive we divide up the sequence into 2 sub-sequences of length N/2

In fact we will require that N be a power of 2 so that we can continue to divide by 2 until we get to units

Such algorithms are called radix-2 FFT algorithms
We could also chose to divide it up into 3 subsequences or 4 or 5 or any other integer into which N factors

There are special FFT algorithms for powers of other primes and for semi-primes like $\mathrm{N}=15=5^{*} 3$

In fact, only for prime N is no possibility of reducing complexity
Shmuel Winograd discovered FFTs with few multiplications for various values of $N=N_{1}{ }^{*} N_{2}$ where N_{1} and N_{2} are coprime

Decimation in Time Partition in Frequency

What does decimating a signal in the time domain do to the frequency domain representation?
Assume that the original signal $x_{0} x_{1} x_{2} \ldots x_{N-1}$
was sampled at f_{s}
and thus by the sampling theorem
have maximum frequency $f_{N}=f_{s} / 2$
Then the decimated signals, $x_{0} x_{2} x_{4} \ldots$ and $x_{1} x_{3} x_{5} \ldots$
are sampled at $\mathrm{f}_{\mathrm{s}} / 2$
and thus have maximum frequency $\mathrm{f}_{\mathrm{s}} / 4$
So we obtain only the lower $1 / 2$ of the original spectral width in other words the LEFT partition of the spectrum

Thus DIT = PIF
We'll see later the exact relationship between the lower and upper partitions of the spectrum

Partition in Time \Leftrightarrow Decimation in Frequency

What does partitioning a signal in the time domain do to the frequency domain representation ?
Assume that the original signal $\mathrm{x}_{0} \mathrm{X}_{1} \mathrm{X}_{2} \ldots \mathrm{x}_{\mathrm{N}-1}$
was sampled at f_{s} and thus has duration $T=N t_{s}=N / f_{s}$
Then the partitioned signals, $\mathrm{x}_{0} \mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{N} / 2-1}$ and $\mathrm{x}_{\mathrm{N} / 2} \mathrm{x}_{\mathrm{N} / 2+2} \ldots \mathrm{x}_{\mathrm{N}-1}$ have duration $N / 2 t_{s}=T / 2$
According to the uncertainty principle if the time duration Δt is reduced by $1 / 2$
then the frequency uncertainty $\Delta \omega$ is increased by 2 (the frequency resolution is blurred)
So, we can effectively observe only every other spectral line!
Thus PIT = DIF

FFT history

The FFT has been discovered many times perhaps as early as unpublished 1805 work by Gauss which predates Fourier!
In 1903 Runge discovered an FFT for N a power of 2 and in 1942 Danielson and Lanczos discovered a O(N $\log \mathrm{N})$ DFT
However, credit is now usually given to

- John Wilder Tukey - American mathematician/statistician (Princeton)
- who coined the words bit = binary digit and software
- James William Cooley - American mathematician / programmer (IBM) who published in 1965 (in order to avoid patenting)

The Cooley-Tukey algorithm is Decimation In Time that is, it decimates the signal in the time domain performing DFTs separately of the evens and the odds

The Sande-Tukey algorithm is Decimation in Frequency that is, it partitions the signal in the time domain performing DFTs separately of the $1^{\text {st }}$ half and $2^{\text {nd }}$ half

Before starting

Recall that the DFT is $X_{k}=\sum_{n=0}^{N-1} x_{n} W_{N}^{n k}$
where W_{N} is the $\mathrm{N}^{\text {th }}$ root of unity $\mathrm{W}_{\mathrm{N}}=e^{-i \frac{2 \pi}{N}}$

We will need three trigonometric identities

1. $W_{N}{ }^{N}=1$ (that's the definition!)
2. $\quad \mathbf{W}_{\mathbf{N}}{ }^{\mathbf{N} / 2}=-1 \quad\left(e^{-i \frac{2 \pi N}{N 2}}=e^{-i \pi}=-1 \quad\right.$ or
3. $\mathrm{W}_{\mathbf{N}}{ }^{2}=\mathrm{W}_{\mathbf{N} / 2}\left(e^{-i \frac{2 \pi}{N} 2}=e^{-i \frac{2 \pi}{N / 2}}\right.$ or

They are trigonometric identities

$$
\text { since } W_{N}=\cos \left(\frac{2 \pi}{N}\right)-i \sin \left(\frac{2 \pi}{N}\right)
$$

DIT (Cooley-Tukey) FFT

Let's derive the radix-2 DIT FFT algorithm!
We start by decimating the formula for the DFT that is, we separate the even terms $2 n$ from the odd terms $2 n+1$

$$
X_{k}=\sum_{n=0}^{N-1} x_{n} W_{N}^{n k}=\sum_{n=0}^{\frac{N}{2}-1}\left(x_{2 n} W_{N}^{2 n k}+x_{2 n+1} W_{N}^{(2 n+1) k}\right)
$$

$3^{\text {rd }}$ identity
Now, $\mathrm{W}_{\mathrm{N}}^{2 \mathrm{nk}}=\mathrm{W}_{\mathrm{N} / 2}^{\mathrm{nk}}$ and $\mathrm{W}_{\mathrm{N}}^{(2 \mathrm{n}+1) \mathrm{k}}=\mathrm{W}_{\mathrm{N}}^{\mathrm{k}} \mathrm{W}_{\mathrm{N}}^{2 \mathrm{nk}}$ and so we can rewrite:

$$
X_{k}=\underbrace{\sum_{n=0}^{\frac{N}{2}-1} x_{2 n} W_{\frac{N}{2}}^{n k}}_{\text {DFT of evens }}+W_{N}^{k} \underbrace{\sum_{n=0}^{\frac{N}{2}-1} x_{2 n+1} W_{\frac{N}{2}}^{n k}}_{\text {DFT of odds }}
$$

DIT - the first step

So we have found

$$
X_{k}=\sum_{n=0}^{\frac{N}{2}-1} x_{n}^{E} W_{\frac{N}{2}}^{\text {Even }}+W_{N}^{k} \sum_{n=0}^{\frac{N}{2}-1} x_{n}^{O} W_{\frac{N}{2}}^{\text {Odd }}
$$

which shows that the DFT indeed divides up into 2 half-sized DFTs and an additional N multiplications by $\mathrm{W}_{\mathrm{N}}^{\mathrm{k}} \quad$ (for $\mathrm{k}=0 \ldots \mathrm{~N}-1$)

This is encouraging, since the glue is $\mathrm{O}(\mathrm{N})$!
The glue factor is usually called the twiddle factor and it is the entire difference between the contribution of the two decimations to the original DFT

Note that we precompute and store the N twiddle factors $W_{N}^{k}(k=0 \ldots N-1)$ and don't have to compute them over and over again!

PIF

The next step is to exploit the relationship between Decimation In Time and Partition In Frequency
What is the connection between
Xk in the left partition : $0 \leq k \leq N / 2-1$
and the corresponding component in the right partition
$X k$ in the right partition: $N / 2 \leq k \leq N-1$

$$
\begin{aligned}
X_{k} & =\sum_{n=0}^{N-1} x_{n} W_{N}^{n k} \\
X_{k+\frac{N}{2}} & =\sum_{n=0}^{N-1} x_{n} W_{N}^{n k} W_{N}^{\frac{N n}{2}} \\
& =\sum_{n=0}^{N-1} x_{n} W_{N}^{n k}(-1)^{n} \longleftarrow{ }^{2 n d} \mathrm{~W}_{N}^{N / 2}=-1
\end{aligned}
$$

Note that we compute exactly the same products but add them with different signs +-+-+-+-

DIT is PIF

So, we have already reduced the number of multiplications by $1 / 2$
Now, the products for which (-1) ${ }^{\mathrm{n}}$ is negative are odd n i.e., exactly those terms in the odd decimation!

So

$$
X_{k+\frac{N}{2}}=\sum_{n=0}^{\frac{N}{2}-1} x_{n}^{E} W_{\frac{N}{2}}^{n k}-W_{N}^{k} \sum_{n=0}^{\frac{N}{2}-1} x_{n}^{O} W_{\frac{N}{2}}^{n k}
$$

We can draw this as a DSP diagram in a nice in-place way!

```
\mp@subsup{x}{k}{E}}\mathrm{ is the DFT sum
don't confuse it with }\mp@subsup{x}{n}{E}\mathrm{ !
(it should have an intermediate sized \(x \ldots\)...)
```


This reminds us of the $\mathrm{N}=2$ butterfly but has a twiddle factor before the butterfly
The DIF algorithm/s butterfly has a twiddle factor after the butterfly

DIT all the way

We have already saved a factor of 2 in the multiplications
but we needn't stop after splitting the original sequence in two !
Each half-length sub-sequence can be decimated again

note that this is in-place!

Assuming that N is a power of 2
we continue decimating until we get to the basic $\mathrm{N}=2$ butterfly
Note that since $W_{N / 2}=W_{N}{ }^{2}$ we can draw this

and we only have to keep one table of $\mathrm{W}_{\mathrm{N}}^{\mathrm{k}}$

Let's continue!

Instead of explicitly writing equations for the next step it is easier to do everything graphically

In order to make things simple, we'll assume $\mathrm{N}=8$ and explicitly draw out all the steps

- decimate the $\mathrm{N}=8$ sequence into two subsequences of length 4
- decimate each of the sub-sequences of length 4 into two sub-sub-sequences of length 2 (4 altogether)
- perform four basic $\mathrm{N}=2$ butterflies

Let's see this happen!

DIT $\mathrm{N}=8$ - step 0

DIT N=8-step 1

DIT N=8 - step 1 : 4 butterflies

The butterflies are all entangled - do you see them?

DIT N=8 - step 2

DIT N=8 - step 2

Note that the second stage butterflies are less entangled!

DIT N=8 - step 3

Complexity

An FFT of length N has

- $\log _{2}(\mathrm{~N})$ stages of butterflies
- there are $1 / 2 \mathrm{~N}$ butterflies in each stage, each with
- 1 complex multiply
- 2 complex adds (1 add and 1 subtract)

So there are :

- $1 / 2 \mathrm{~N} \log _{2}(\mathrm{~N})$ complex multiplications
- $\mathrm{N} \log _{2}(\mathrm{~N})$ complex additions

Which is why we say that the complexity is $\mathrm{O}(\mathrm{N} \log \mathrm{N})$
for $\mathrm{N}=8$ there are 3 stages
Stage 1: 4 butterflies
Stage 2: 2*2 butterflies
Stage 3: 4*1 butterflies

Well, its even a bit less

Actually, some of the multiplications are trivial!

- the first stage has one trivial multiplication $\left(\mathrm{W}_{\mathrm{N}}^{0}=1\right)$
- the 2nd stage has 2 trivial multiplications
- the last stage has no true multiplications (it has $\mathrm{N}=2$ butterflies!) So for $\mathrm{N}=8$ there are really only 5 multiplications instead of $8 \log _{2}(8)=24$! // //

Real complexity

So far we have counted complex multiplications and additions
Each complex add entails 2 real adds
Each complex multiply is either:

- 4 real multiplies and 2 real adds

$$
(a+i b)(c+i d)=(a \times c-b * d)+i(a \times d+b+c)
$$

- or 3 real multiplies and 5 real adds

$$
\begin{aligned}
& M 1=a * c \quad M 2=b * d \quad M 3=(a+b) *(c+d) \\
& (a+i b)(c+i d)=(M 1-M 2)+i(M 3-M 2-M 1)
\end{aligned}
$$

So

- $N \log _{2}(N)$ complex additions $=2 N \log _{2}(N)$ real additions
- $1 / 2 \mathrm{~N} \log _{2}(\mathrm{~N})$ complex multiplications =
- $2 \mathrm{~N} \log _{2}(\mathrm{~N})$ real multiplications and another $\mathrm{N} \log _{2}(\mathrm{~N})$ real additions
or
$-3 / 2 \mathrm{~N} \log _{2}(\mathrm{~N})$ real multiplications and another $5 / 2 \mathrm{~N} \log _{2}(\mathrm{~N})$ real additions

What's going on?

Our time domain signal is not arranged $\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots$!

Bit reversal

Let's see if we can figure it out!
Here for $\mathbf{N}=16$ IN-PLACE!

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111	
0	2	4	6	8	10	12	14	1	3	5	7	9	11	13	15	
0000	0010	0100	0110	1000	1010	1100	1110	0001	0011	0101	0111	1001	1011	1101	1111	
0	4	8	12	2	6	10	14	1	5	9	13	3	7	11	15	
0000	0100	1000	1100	0010	0110	1010	1110	0001	0101	1001	1101	0011	0111	1011	1111	
0	8	4	12	2	10	6	14	1	9	5	13	3	11	7	15	
000	1000	0100	1100	0010	1010	0110	1110	0001	1001	0101	1101	0011	1011	0111	11114	

$1^{\text {st }}$ transition is cyclic left shift
$2^{\text {nd }}$ transition freezes the LSB and cyclic left shifts the rest
$3^{\text {rd }}$ transition freezes the 2 LSBs and cyclic left shifts (swaps) the rest
Altogether we find abcd \rightarrow bcda \rightarrow cdba \rightarrow dcba
The bits of the index have been reversed!
This is called bit-reversal
and DSP processors have a special addressing mode for it

DIT N=8 with bit reversal

The matrix interpretation

The FFT can be understood as a matrix decomposition that reduces the number of operations to multiply by it
For example, when $\mathrm{N}=4$

$$
\underline{\underline{W_{4}}}=\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -\mathrm{i} & -1 & \mathrm{i} \\
1 & -1 & 1 & -1 \\
1 & \mathrm{i} & -1 & -\mathrm{i}
\end{array}\right)=\left(\begin{array}{rrrr}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & -\mathrm{i} \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & \mathrm{i}
\end{array}\right)\left(\begin{array}{rrrr}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

The right matrix is a permutation matrix which carries out the bit reversal
The middle matrix comprises the butterflies (note the block matrix form)
The left matrix is the twiddle factors

What about the DIF algorithm?

The other radix-2 FFT algorithm could be called Partition in Time but is always called Decimation In Frequency
To derive it algebraically we need to return to the DFT formula and partition the sum into hiah and low halves

$$
\begin{aligned}
X_{k} & =\sum_{n=0}^{N-1} x_{n} W_{N}^{n k}=\sum_{n=0}^{\frac{N}{2}-1} x_{n} W_{N}^{n k}+\sum_{n=\frac{N}{2}}^{N-1} x_{n} W_{N}^{n k} \\
& =\sum_{n=0}^{\frac{N}{2}-1} x_{n}^{L} W_{N}^{n k}+\sum_{n=0}^{\frac{N}{2}-1} x_{n}^{R} W_{N}^{n k} W_{N}^{\frac{N k}{2}}
\end{aligned}
$$

We then exploit that DIF to relate X_{k} (even k) with X_{k+1} resulting in butterflies

But instead of working hard we'll use a trick!
Performing the transposition theorem on the $\mathrm{N}=8$ DIT (and a mirror reflection) gives us the $n=8$ DIF!

DIF N=8

FIFO FFT

There are many other Fast Fourier Transform algorithms!
What if we need to update the DFT every sample?
In other words, $\left[\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{N}-1}\right],\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots \mathrm{x}_{\mathrm{N}}\right],\left[\mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \ldots \mathrm{x}_{\mathrm{N}+1}\right], \ldots$
You might already know the trick
on how to update a simple moving average
$\mathrm{A}_{1}=\mathrm{x}_{0}+\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots+\mathrm{x}_{\mathrm{N}-1}$
$A_{2}=x_{1}+x_{2}+x_{3}+\ldots+x_{N}=A_{1}-x_{0}+x_{N}$
$A_{3}=x_{2}+x_{3}+x_{4}+\ldots+x_{N+1}=A_{2}-x_{1}+x_{N+1}$
This is implemented by maintaining a FIFO of length N
adding the new input and subtracting the one to be discarded
A similar trick works for weighted MA
if the weights form a geometric progression
$A_{1}=x_{0}+q x_{1}+q^{2} x_{2}+\ldots+q^{N-1} x_{N-1}$
$A_{2}=x_{1}+q x_{2}+q^{2} x_{3}+\ldots+q^{N-1} x_{N}=\left(A_{1}-x_{0}\right) / q+q^{N-1} x_{N}$
$A_{3}=x_{2}+q x_{3}+q^{2} x_{4}+\ldots+q^{N-1} x_{N+1}=\left(A_{2}-x_{1}\right) / q+q^{N-1} x_{N+1}$

FIFO FFT (cont)

The DFT is just such a weighted moving average, with $q=W_{N}^{k}$ but when moving from time to time we shouldn't reset the clock!
So

$$
\begin{aligned}
X_{k_{m}} & =\sum_{n=0}^{N-1} x_{m+n} W_{N}^{(m+n) k} \\
X_{k_{m+1}} & =\sum_{n=0}^{N-1} x_{m+1+n} W_{N}^{(m+1+n) k} \\
& =\sum_{n=1}^{N} x_{m+n} W_{N}^{(m+n) k} \\
& =\sum_{n=0}^{N-1} x_{m+n} W_{N}^{(m+n) k}-x_{m} W_{N}^{m k}+x_{m+N} W_{N}^{(m+N) k}
\end{aligned}
$$

and hence $\quad X_{k_{m+1}}=X_{k_{m}}+\left(x_{m+N}-x_{m}\right) W_{N}^{m k}$
requiring only 2 complex additions and one multiplication per k or altogether N multiplications and 2 N additions!

Goertzel's algorithm

Sometimes we are only interested in the energy $\left|\mathrm{X}_{\mathbf{k}}\right|^{2}$ of a few of the frequencies k and computing all N spectral values would be wasteful
For example, when looking for energy at a few discrete frequencies as in a DTMF detector
For such cases there is an algorithm due to Goertzel (Herzl in Russian) which is less expensive that running many bandpass filters
The idea is to compute only the X_{k} needed
by using Horner's rule for evaluating polynomials (simplify $\mathrm{W}_{\mathrm{N}}^{\mathrm{k}}$ to W)

$$
\begin{aligned}
X_{k} & =\sum_{n=0}^{N-1} x_{n} W_{N}^{n k}=x_{0}+x_{1} W+x_{2} W^{2}+\ldots x_{N-1} W^{N-1} \\
& =\left(\left(\cdots\left(x_{N-1} W+x_{N-2}\right) W+\ldots+x_{2}\right) W+x_{1}\right) W+x_{0}
\end{aligned}
$$

This can be further simplified to get a noncomplex recursion

Goertzel 1

To make the recursion look like a convolution we use $\mathrm{V}=\mathrm{W}^{-1}$

$$
X_{k}=\sum_{n=0}^{N-1} x_{n} V^{N-n}=x_{0} V^{N}+x_{1} V^{N-1}+\ldots+x_{N-2} V^{2}+x_{N-1} V
$$

Changing the overall phase doesn't change the power spectrum

$$
X_{k}^{\prime}=x_{0} V^{N-1}+x_{1} V^{N-2}+\ldots+x_{N-2} V+x_{N-1}
$$

which using Horner's rule is coded like this :

$$
\begin{aligned}
& P_{0} \leftarrow x_{0} \\
& \text { for } n \leftarrow 1 \text { to } N-1 \\
& \quad P_{n} \leftarrow P_{n-1} V+x_{n} \\
& X_{k}^{\prime} \leftarrow P_{N-1}
\end{aligned}
$$

Since all the x_{n} are real, at each step $P_{n}-P_{n-1} V$ is real So we implicitly define a new real sequence Q_{n} by $P_{n}=Q_{n}-Q_{n-1} W$

Goertzel 2

After a little algebra we find the following recursion:

$$
\begin{aligned}
& \text { Given: } x_{n} \text { for } n=0 \ldots N-1 \\
& Q_{-2} \leftarrow 0, \quad Q_{-1} \leftarrow 0 \\
& Q_{0} \leftarrow x_{0} \\
& \text { for } n \leftarrow 1 \text { to } N-1 \\
& \quad Q_{n} \leftarrow x_{n}+Q_{n-1}-Q_{n-2} \\
& X_{k}^{\prime} \leftarrow Q_{N-1}-W Q_{N-2}
\end{aligned}
$$

And the desired energy is given by

$$
\left|X_{k}\right|^{2}=Q_{N-1}^{2}+Q_{N-2}^{2}-A Q_{N-1} Q_{N-2}
$$

where $\quad A \equiv V+W=2 \cos \left(\frac{2 \pi k}{N}\right)$.

Using Goertzel

To use Goertzel first decide on how many points N you want to use Since Goertzel's algorithm only works for integer digital frequencies (that is, for analog frequencies $f=k / N$ fs)
larger N allows finer resolution and narrower bandwidth but also longer computation time and delay

For each frequency that is needed

- compute W and A
- initialize
- iterate $\mathrm{N}-1$ times using A
- compute X using W
- compute the desired squared power using A

Other radixes

While radix-2 is popular, sometimes other radixes are better
The radix 4 DFT is

$$
\left.\begin{array}{rlrl}
X_{0} & =x_{0} & + & x_{1}
\end{array}+x_{2}+x_{3}\right)
$$

which corresponds to radix-4 butterflies

12 complex additions
0 true multiplications
which is more expensive than radix-2

8 complex additions
0 true multiplications

FFT842

But this is only the case for $\mathrm{N}=4$ itself
For powers of 4 there are only $\log _{4} \mathrm{~N}=1 / 2 \log _{2} \mathrm{~N}$ stages of butterflies and each has $3 / 4 \mathrm{~N}$ complex multiplications and so only $3 / 8 \log _{2} \mathrm{~N}$ multiplications altogether which is slightly less than $1 / 2 \log _{2} \mathrm{~N}$!
But only half of the powers of 2 are also powers of 4 so the algorithm is less applicable ...
Similarly, for $\mathrm{N}=8^{\mathrm{m}}$ there are even fewer stages but only a quarter of the powers of 2 are powers of 8

So, the FFT842 algorithm performs as many radix-8 stages that it can
it then performs either a radix-4 or a radix-2 stage as needed
It beats out pure radix-2 algorithms on general purpose CPUs
but highly optimized radix-2 are preferable on DSPs

Multiplication by FFT

When learning the Toom-Cook algorithm we said that for large N the FFT will multiply even faster
That is because $\mathrm{O}(\mathrm{N} \log \mathrm{N})<\mathrm{O}\left(\mathrm{Nog}_{2}{ }^{3}\right)$
We saw that long multiplication $\mathrm{c}=\mathrm{a} * \mathrm{~b}$ is actually 2 N convolutions Hence convolution in the time domain takes $\mathrm{O}\left(\mathrm{N}^{2}\right)$ multiplications but in the frequency domain it only takes $\mathrm{O}(\mathrm{N})$
So the strategy is instead of convolution $c=a * b$

- use the FFT to convert from the time to the frequency domain

$$
a \rightarrow A \text { and } b \rightarrow B[O(N \log N)]
$$

- multiply point by point in the frequency domain $\mathrm{C}=\mathrm{AB}[\mathrm{O}(\mathrm{N})$]
- convert back from the frequency to the frequency domain $C \rightarrow c \quad[\mathrm{O}(N \log N)]$

Altogether $\mathrm{O}(\mathrm{N} \log \mathrm{N})$!

Example multiplication (1)

Let's see how this works for $\mathrm{N}=4$!
We want to multiply $a=a_{3} a_{2} a_{1} a_{0}$ by $b=b_{3} b_{2} b_{1} b_{0}$
We convert the numbers into time domain signals
$a_{0} a_{1} a_{2} a_{3}$ and $b_{0} b_{1} b_{2} b_{3}$

\mathbf{a}	bit representation	time representation
0	0000	$(0,0,0,0)$
1	0001	$(1,0,0,0)$
2	0010	$(0,1,0,0)$
3	0011	$(1,1,0,0)$
4	0100	$(0,0,1,0)$
5	0101	$(1,0,1,0)$
6	0110	$(0,1,1,0)$
7	0111	$(1,1,1,0)$
8	1000	$(0,0,0,1)$
9	1001	$(1,0,0,1)$
10	1010	$(0,1,0,1)$
11	1011	$(1,1,0,1)$
12	1100	$(0,0,1,1)$
13	1101	$(1,0,1,1)$
14	1110	$(0,1,1,1)$
15	1111	$(1,1,1,1)$

Example multiplication (2)

For this simple case we can simply convert all 16 signals into the frequency domain

To do this we multiply by the DFT matrix and we find:

$$
\left(\begin{array}{llll}
W_{4}^{0} & W_{4}^{0} & W_{4}^{0} & W_{4}^{0} \\
W_{4}^{0} & W_{4}^{1} & W_{4}^{2} & W_{4}^{3} \\
W_{4}^{0} & W_{4}^{2} & W_{4}^{4} & W_{4}^{6} \\
W_{4}^{0} & W_{4}^{3} & W_{4}^{6} & W_{4}^{9}
\end{array}\right)=\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -\mathrm{i} & -1 & \mathrm{i} \\
1 & -1 & 1 & -1 \\
1 & \mathrm{i} & -1 & -\mathrm{i}
\end{array}\right)
$$

a	time representation	frequency representation	
0	$(0,0,0,0)$	$(0,0,0,0)$	
1	$(1,0,0,0)$	$(1,1,1,1)$	
2	$(0,1,0,0)$	$(1,-\mathrm{i},-1,+\mathrm{i})$	
3	$(1,1,0,0)$	$(2,1-\mathrm{i}, 0,1+\mathrm{i})$	Of course, using the W matrix
4	$(0,0,1,0)$	$(1,-1,1,-1)$	for conversion is $\mathrm{O}\left(\mathrm{N}^{2}\right)$
5	$(1,0,1,0)$	$(2,0,2,0)$	
6	$(0,1,1,0)$	$(2,-1-\mathrm{i}, 0,-1+\mathrm{i})$	
7	$(1,1,1,0)$	$(3,-\mathrm{i}, 1,+\mathrm{i})$	But we would get the same
8	$(0,0,0,1)$	$(1,+\mathrm{i},-1,-\mathrm{i})$	answers with the FFT
9	$(1,0,0,1)$	$(2,1+\mathrm{i}, 0,1-\mathrm{i})$	
10	$(0,1,0,1)$	$(2,0,-2,0)$	
11	$(1,1,0,1)$	$(3,1,-1,1)$	
12	$(0,0,1,1)$	$(2,-1+\mathrm{i}, 0,-1-\mathrm{i})$	
13	$(1,0,1,1)$	$(3,+\mathrm{i}, 1,-\mathrm{i})$	
14	$(0,1,1,1)$	$(3,-1,-1,-1)$	
15	$(1,1,1,1)$	$(4,0,0,0)$	

Example multiplication (3)

For example, let's multiply $2 * 3$

$$
\begin{aligned}
& S_{0}^{[2 * 3]}=S_{0}^{[2]} S_{0}^{[3]}=1 * 2=2 \\
& S_{1}^{[2 * 3]}=S_{1}^{[2]} S_{1}^{[3]}=-\mathrm{i} *(1-\mathrm{i})=-1-\mathrm{i} \\
& S_{2}^{[2 * 3]}=S_{2}^{[2]} S_{2}^{[3]}=-1 * 0=0 \\
& S_{3}^{[2 * 3]}=S_{3}^{[2]} S_{3}^{[3]}=\mathrm{i} *(1+\mathrm{i})=-1+\mathrm{i}
\end{aligned}
$$

Looking this up we find $\quad S^{[2 * 3]}=(2,-1-\mathrm{i}, 0,-1+\mathrm{i}) \quad$ is indeed $\mathrm{S}^{[6]}$ And similarly for almost all other multiplications that fit into 4 bits

- 0 * $s=0$
- $1^{*} \mathrm{~s}=\mathrm{s}$
- $2 * 4=8$
- $2 * 5=10$
- $2 * 6=12$
- $2 * 7=14$
- $3 * 4=12$
- 3 * $5=15$

Example multiplication (4)

All products that fit into 4 bits work correctly - except $3^{*} 3$

What's going on?
Converting back using the iDFT we find (1, 2, 1, 0) which has a meaningless 2 bit !!!
So, we convert back into binary digits 0121 and perform the carries to get 1001 which is indeed 9

For all products that exceed 4 bits we can use 8 bits
i.e., signals with 8 time values

Spectral Estimation

Sometimes we only need to know which frequencies are in a signal
For this task the FFT is almost always not the best solution

- for unknown frequencies you need to compute the entire spectrum
- it does not give accurate frequencies - only bins (depending on N)

There are better ways, for example:

- If you know that the signal is a single sinusoid in white noise or N sinusoids in white noise then use the Pisarenko Harmonic Distribution
- If the signal can be assumed to be generated by an AR filter solve the Yule-Walker equations
and the pole angles give the frequencies!

Why do we need DSPs?

In this part of the course DSP = Digital Signal Processor
A DSP is a CPU that is used in signal processing applications
Why do we need a DSP? Why not use a regular CPU?
DSPs are optimized for DSP, and thus :

- DSPs are physically small several millimeters as compared to several centimeters
- DSPs are much more energy efficient a DSP may consumes milliwatts as compared to standard CPUs tens of watts or more
- DSPs are less expensive
a DSP may cost several dollars or less as compared to a CPUs 10s - 100s of dollars or more

Other special processors

DSPs are not the only species of special CPUs

- Array Processors specialize in matrix multiplication
- FFT chips compute FFT even faster than DSPs by parallelizing the butterflies (up to a given size)
- Systolic Arrays have arrays of simple processors to perform
- matrix operations
- convolutions
- image processing
- Graphics Processing Units were designed for graphics displays but are now used for many parallelizable tasks such as deep learning
- Al processors, to accelerate neutral network training
- Network processors are optimal for packet forwarding

DSP Processors

We have seen that the Multiply and Accumulate (MAC) operation is very prevalent in DSP computation

- computation of energy
- MA filters
- AR filters
- correlation of two signals
- DFT

A Digital Signal Processor (DSP) is a CPU
that can compute MACs very efficiently
In fact, a DSP computes each individual MAC in 1 CPU clock cycle
Thus an L coefficient MA takes (about) L clock cycles in a DSP
and to perform it in real-time
L must be less than the sample interval (time between 2 inputs)

CPU architecture

The term architecture in CS originated when IBM designed a series of computers
and desired to use the same (assembly) code on all of them
Like in buildings, architecture means the overall design without quantitative details

A DSP is a CPU with a specific architecture designed to be efficient in computation of MACs

The idea is to remove all architectural elements not needed for MACs (e.g., cache memory) in order to keep size and power minimal and add new architectural elements that support MACs

We will start with a simple generic CPU architecture and see what elements we need to add

A simple CPU

We will assume a simplistic model of CPU architecture

- the CPU is driven by a crystal (clock)
- faster CPUs can use higher frequency clocks
- the CPU connects to external memory over a bus
- the CPU has an ALU with the usual arithmetic operations
- the CPU has registers
which are internal memory locations upon which the ALU can operate

What is the XTAL for?

All CPUs are driven by an oscillator (usually a piezoelectric crystal) that supplies periodic pulses (we often say clocks or cycles or ticks) We quantify efficiency of an operation by the number of ticks it requires

CPUs are rated according to the maximum frequency of the crystal So, a 3 GHz CPU can compute 3 times as fast as a 1 GHZ CPU
if it is fed by a 3 GHZ crystal (but will be the same if fed by 1 GHz xtal!)
To increase yield, fabricated CPUs dies are tested for speed
and the CPUs rated according to the speed attained
Modern CPUs use microcode
their op-codes do not directly translate into hardware operations but are actually subroutines in a lower level language
Each individual microcode instruction takes place in on pulse time
Most op-codes require multiple microcode instructions
(e.g., the multiplication op-code might be microcoded Toom-Cook)

Why registers?

CPUs are classified based on the number of addresses in an op-code

- 3 address CPUs: A1 = A2 op A3
- 2 address CPUs: A1 = A1 op A2
- 0 address CPUs (stack machines): op

Early computers allowed arithmetic operations on memory locations but this severely limits memory space
So a full 3-address architecture
needs an opcode that contains 3 addresses in memory
For example, a computer with 1 MB of memory
requires $3^{*} 20$ bits $=60$ bits just to specify memory
and more bits to describe the operation
The alternative is to enable arithmetic only on registers
which are special memory locations internal to the CPU
So, if we have 16 registers
a full 3 -address architecture only requires $3 * 4=12$ bits + operation
The cost is the need to load from and store to external memory

Special registers

Not all registers are created equal!
In addition to general purpose registers all CPUs have special ones
There is one special register called the Program Counter
that always holds the address of the next op-code to be performed
It is auto-incremented each operation
but can be overwritten by goto and conditional branch op-codes
In DSPs some registers are accumulators
Accumulators hold larger numbers than regular registers
(e.g., a regular register may be 16 bits in length and an accumulator 24 bits - 8 guard bits)
Accumulators are used for accumulating
and need the longer length in order not to overflow!
Many CPUs have other special registers
such as stack pointers, loop counters, pointer registers, etc.

High-level MAC loop

The basic MAC loop in high level languages is
(assuming that a and x are in static buffers)

```
loop over all times n
    initialize }\mp@subsup{y}{n}{}\leftarrow
    loop over i from 1 to number of coefficients (L)
        yn}\leftarrow\mp@subsup{y}{n}{}+\mp@subsup{a}{i}{}*\mp@subsup{x}{j}{}\quad\mathrm{ (j somehow related to i)
    output yn For energy and correlationi and j increase together
                        For convolutioni increases and j decreases
```

Efficient low level programming always uses (read) pointers since array indexing requires wasteful offset calculations

$$
\operatorname{ADDR}(a[i])=\operatorname{ADDR}(a[0])+i \quad * \text { word-length }
$$

To explicitly increment the pointers

$$
\operatorname{ADDR}(a[i+1])=\operatorname{ADDR}(a[i])+\text { word-length }
$$

Intermediate level MAC loop

So, in some imaginary assembly level language our MAC loop looks like this:

```
loop over all times n
    clear y
    set number-of-iterations to L
    loop
        decrement number-of-iterations
        if number-of-iterations = 0 then terminate loop
        update a pointer
        update x pointer
        multiply z \leftarrow a * x (3-address addressing)
        increment }y\leftarrowy+z\quad(2-address addressing
```

 output y

Low level MAC Ioop

Now let's use registers! (remember we have a, x, and y registers)

```
loop over all times n
    clear y register
    set number-of-iterations to L
    loop
        decrement number-of-iterations
        if number-of-iterations = 0 then terminate loop
        update a pointer
    load contents of memory addressed by a into register a
    update x pointer
    load contents of memory addressed by x into register x
    multiply z \leftarrow a * x (register operation!)
    increment y \leftarrow y + z (register operation!)
    store y
```


Zero-overhead loops

DSPs, like many CPUs, have a zero-overhead loop
This means that we can configure a special loop counter register that auto-decrements and is tested implicitly

```
loop over all times n
    clear y register
    loop number-of-iterations times (zero overhead loop)
        update a pointer
        load contents of memory addressed by a into register a
        update x pointer
        load contents of memory addressed by x into register x
        multiply z \leftarrow a * x (register operation!)
        increment }Y\leftarrowy+z (register operation!
    store y
```

Why do we no longer care about the decrement and testing?
Since additional hardware (silicon) takes care of this task in parallel to other operations!

Cycle counting

We still can't count clock ticks since really low level (hardware) operations need to take the op-code fetch and decode into account
So the clocks operations inside the outer loop look something like this:

1. Update pointer to a_{i}
2. Update pointer to x_{j}
3. LOAD contents of a_{i} into register a
4. LOAD contents of x_{j} into register x
5. Fetch operation (MULT)
6. Decode operation (MULT)
7. MULT a*x with result in register z (MULT really takes >1 clock!)
8. Fetch operation (INC)
9. Decode operation (INC)
10. INC register y by contents of register z

So, it takes at least 10 cycles to perform each MAC using a regular CPU
Our mission (and we have decided to accept it!)
is to reduce this to 1 clock cycle by adding new silicon

This really isn't right!

We ridiculously assumed each operation takes only 1 cycle

- we know multiplication takes many more
- addition frequently takes a few cycles
- even fetch really requires at least 2 cycles
- 1 to send an address to external memory
- 1 to retrieve the value from the memory

So we are radically underestimating
the number of cycles a regular CPU needs
But we don't care since this will happen in any CPU even a DSP!

Step 1 - new opcode

To build a DSP (a 1-cycle MAC CPU) we need to enhance the basic CPU with new hardware (silicon)
The easiest step is to define a new opcode called MAC which is what Intel did in the MMX extensions

The upgraded code now looks like this:

```
1. Update pointer to ai
```


2. Update pointer to x_{j}
3. LOAD contents of a_{i} into register a
4. LOAD contents of x_{j} into register x
5. Fetch operation (MAC)
6. Decode operation (MAC)
7. MAC a*x with incremented to accumulator y

However $7>1$, so this is still NOT a DSP!

Step 2 - register arithmetic

The two operations

- Update pointer to a_{i}
- Update pointer to x_{j}
could be performed in parallel but both are performed by the ALU
So we add pointer arithmetic units one for each pointer register
Special sign || used in DSP assembler to mean operations in parallel

1. Update pointer to a_{i} ll Update pointer to x_{j}
2. LOAD contents of a_{i} into register a
3. LOAD contents of x_{j} into register x
4. Fetch operation (MAC)
5. Decode operation (MAC)
6. MAC $a * x$ with incremented to accumulator y

However $6>1$, so this is still NOT a DSP!

Step 3 - memory banks and buses

We would like to perform the loads in parallel but we can't since they both have to go over the same bus
So we add another bus and segment into memory banks so that there is no contention!
There is dual-port memory but it has an arbitrator which adds delay

1. Update pointer to $a_{i} \mid l$ Update pointer to x_{j}
2. LOAD a_{i} into a ll LOAD x_{j} into x
3. Fetch operation (MAC)
4. Decode operation (MAC)
5. MAC a*x with incremented to accumulator y

However $5>1$, so this is still NOT a DSP!

Harvard architecture

One of the first digital computers
was the Automatic Sequence Controlled Calculator (the Mark I) that was designed in Harvard by Howard Aiken (and built by IBM)
and employed >750,000 electromechanical components
It was funded by the US Navy
and later enhanced to become the Harvard Mark II, III, and IV
The Harvard computers were used by John von Neumann
for calculations related to the Manhattan project and was programmed by Grace Hopper (the originator of the word bug)

The overall architecture of the Harvard computers included

- a central processing unit
- program memory (that is immutable during run-time)
- data memory (that can be read and written during run-time)

Von Neumann architecture

The Electronic Numerical Integrator and Computer is often called the $1^{\text {st }}$
fully programmable, general-purpose, digital computer
It was designed by John Mauchly and J. Presper Eckert
at the University of Pennsylvania, funded by the US army based on principles described in 1945 by John von Neumann

The overall architecture of the ENIAC included

- a central processing unit
- a single memory that holds both program op-codes and data

Von Neumann merged program and data memory not only to simplify but to enable changing the program during run-time (learning)
Turing, after reading von Neumann's paper,
abstracted these principles into what is called the Turing machine
The von Neumann architecture is used in all modern computers except DSPs!

Step 4 - Harvard architecture

By adopting Harvard architecture with yet another bus to another memory we needn't count fetch since it is performed in parallel

We can remove the decode cycle as well (we'll see why later)

1. Update pointer to a_{i} ll Update pointer to x_{j}
2. LOAD a_{i} into a ll LOAD x_{j} into x
3. MAC a*x with incremented to accumulator y

However $3>1$, so this is still NOT a DSP!

Step 5 - pipelines

We seem to be stuck

- Update MUST be before Load
- Load MUST be before MAC

But we can use a pipelined approach
It takes 1 tick per tap as long as the pipeline is full altogether it takes $n+2$ clocks (which is n for large $n!$)
More generally, a pipeline of depth D takes $\mathrm{n}+\mathrm{D}-1$ ticks
op

U1	U2	U3	U4	U5		
	L1	L2	L3	L4	L5	
		M1	M2	M3	M4	M5
1	1	1	1	1	1	1
1	2	3	4	5	6	7

Why do we need longer pipelines?

Why would we want $D>3$?
Remember that we said
that we don't have to count ticks for fetch and decode?
These are actually performed in parallel using a pipeline
Doesn't a MAC op-code have to multiply before adding?
Yes, but the DSP chip pipelines them
Remember we said that multiplication
really takes many more than 1 cycle?
We can pipeline these cycles to reduce overall execution time
Of course, adding to the pipeline's depth

- increases the delay
- makes filling the pipeline more challenging
- is subject to diminishing returns (Amdahl's law)

Pipelines in other CPUs

Many modern CPUs employ pipelines - how are DSPs different?

- DSPs employ pipelining as a last resort (when logically stuck) other CPUs use pipelining as the main (only) parallelization
Thus, non-DSP CPUs can pipeline all stages of a MAC resulting in lower ticks/tap
but more delay and less determinism
Advanced non-DSP CPUs even employ speculative lookahead to attempt to keep the pipeline full with conditional branches
- DSPs allow programmers to monitor and manipulate the pipeline for other CPUs pipelining is basically transparent
- DSPs actually get more from pipelining due to memory banks and Harvard architecture

DSP programming

DSP programming is harder than regular programming
(which is why it is today mostly done in India and eastern Europe)
For maximal efficiency :

- one needs to program in assembly
- one needs to know the DSP's architecture
- one needs to program in parallel assembly
- one needs to place data in the correct memory banks
- one needs to keep the pipeline full

The last portion often requires painstakingly rewriting and reordering
The usual technique is to start with many NOPs and iteratively improve the program eliminating pipeline holes

DSP programmers

There are three types of DSP programmers

1. algorithm designers

- use floating point
- care more about theory than real-time
- usually code in MATLAB, Python, C++

2. low-level coders

- structure code for real-time
- convert algorithms from floating point to fixed point
- usually code in C

3. DSP coders

- convert real-time oriented C to parallel assembly
- work directly on the silicon
- program critical routines in DSP assembly language
- program non-critical routines in C with pragmas

Zero-overhead interrupts

How do the input sample values get into the buffers?
All CPUs have (serial or parallel) I/O ports with memory for one value (bit or byte or whatever)
There are two methods for transferring from an input port to the buffer:

1. Polling - the CPU repeatedly checks if something is in port memory this is very inefficient since we need to check overly frequently
2. Interrupts - when the input port is ready it raises an interrupt
causing the CPU to perform a context switch
Context switches are very expensive on regular CPUs since all registers need to be saved and later restored
Most DSPs have a limited zero-overhead interrupt mechanism
where certain registers are copied into shadow registers in 1 cycle and restored when returning form the interrupt handler
Such handlers are usually limited to a small number of instructions (just enough to copy and increment the buffer length)
and are themselves non-interruptable

Fixed point

In the real world signal values are real numbers that can be well approximated by rational numbers but not usually by integers
Fixed point representation represents a rational number as a integer by fixing the (binary) decimal point, described as Qm.n notation

We often take $m=0$ and use Qn (scientific) notation in which the integer value \mathbf{I} represents the rational $\mathbf{Q}=\mathbf{I} / \mathbf{2}^{\mathbf{n}}$
In each part of the program
all values are represented in the same Qn
but in different parts different Qn are used

Q representation examples

On a machine with 16 bit registers

binary	integer	Q15 value	Q8 value	Q4 value
0100000000000000	16384	0.5	64.0	1024.0
0010000000000000	8192	0.25	32.0	512.0
0001000000000000	4096	0.125	16.0	256.0
1100000000000000	-16384	-0.5	-64.0	-1024.0
1010000000000000	-8192	-0.25	-32.0	-512.0
1001000000000000	-4096	-0.125	-16.0	-256.0

since
$0.100000000000000=0.5$
$01000000.00000000=64.0$
$010000000000.0000=1024.0$

Saturation Arithmetic

Many DSPs are fixed point, i.e. handle (2s complement) integers only
Floating point is more expensive and slower
(because of the need to renormalize after calculation)
Floating point numbers can underflow
Fixed point numbers can overflow
We saw that accumulators have guard bits to protect against overflow
When regular fixed point CPUs overflow

- numbers greater than MAXINT become negative
- numbers smaller than -MAXINT become positive

Fixed point DSPs have a saturation arithmetic mode

- numbers larger than MAXINT become MAXINT
- numbers smaller than -MAXINT become -MAXINT this is still an error, but a smaller error

There is a tradeoff between safety from overflow and SNR

What else is special?

We have already mentioned that DSPs support bit-reversed addressing which speeds calculation of FFTs

However, it is important to consider what DSPs don't have:

- most DSPs run at modest clock rates compared to modern CPUs (50MHz, $100 \mathrm{MHz}, 200 \mathrm{MHz}$)
- many DSPs are fixed point
- many DSPs have modest word sizes (16/24 bits, 32/40 bits)
- DSPs do not have program or data cache memory
- DSPs do not use modern accelerations, e.g., speculative execution
- most DSPs do not have a division op-code
- DSPs do not have a square-root op-code

That's why DSPs are amazing at DSP tasks (but miserable at others)
but can be small and require little power

What - no division?

Most DSPs do not have an op-code for division, which is often needed
For example, Automatic Gain Control divides by the RMS
If time is not critical one can use a library routine
but for real-time we need something better
It is enough to know how to invert $y=1 / x$
for which there are many iterations
that converges to the right answer
The simplest one is
Start with a reasonable guess for y
Loop

$$
y \leftarrow y *\left(2-y^{*} x\right)
$$

If you start with a good guess*, this will converge in a few iterations For AGC, initializing with the previous value, 3 iterations is often enough

* many DSPs have an inverse-seed opcode

Example : how much is $1 / 2$?

Full division

If you need to divide $y=N / D$ and don't want to invert and multiply then Goldschmidt division uses a similar trick

```
N' \leftarrow N
D' \leftarrow D
Loop
```

```
\(y \leftarrow 2-D^{\prime}\)
```

$y \leftarrow 2-D^{\prime}$
$\mathrm{N}^{\prime} \leftarrow \mathrm{N}^{\prime}$ * y
$\mathrm{N}^{\prime} \leftarrow \mathrm{N}^{\prime}$ * y
$D^{\prime} \leftarrow D^{\prime}$ * y

```
\(D^{\prime} \leftarrow D^{\prime}\) * \(y\)
```

More generally
many operations can be carried out by finding a recursion for which the answer is an attractive fixed point

Square root

Square roots are often needed in DSP
and some DSPs have a square-root-seed op-code but none have a full square-root
The most common non-DSP iteration for square root $y=\sqrt{x}$
is the Newton-Raphson iteration which converges quadratically (and is great for finding square roots in your head!)

```
y }\leftarrow\mathrm{ square-root-seed(x)
```

Loop

$$
y \leftarrow \frac{1}{2}(y+x / y)
$$

but this requires a division!
Sometimes one can use the fact that $\log (\sqrt{x})=1 / 2 \log (x)$ along with algorithms for log and power
For small intervals one can use polynomial approximations such as $y \approx-0.5973 x^{2}+1.4043 x+0.1628$
But there is often an alternative

Example : how much is $\sqrt{ } 4$?

Pythagorean addition

In DSP applications square root is mostly required as part of
Pythagorean addition $\quad x \oplus y \equiv \sqrt{x^{2}+y^{2}}$
for which there are approximations such as

$$
x \oplus y \approx \operatorname{abmax}(x, y)+k \operatorname{abmin}(x, y)
$$

where $0.25<k<0.31$

- $\mathrm{k}=0.267304$ gives the exact mean
- $k=0.300585$ gives minimum variance

More importantly the Moler-Morrison algorithm which requires 2 divisions
and the CORDIC algorithm requires only shift and add and converges exponentially, gaining 1 bit per iteration

Moler Morrison

$\mathrm{p} \leftarrow \max (|\mathrm{x}|,|\mathrm{y}|)$
$q \leftarrow \min (|x|,|y|)$
while $q>\varepsilon$
$r \leftarrow(q / p)^{2}$
$s \leftarrow r /(4+r)$
$\mathrm{p} \leftarrow \mathrm{p}+2 \mathrm{sp}$
$q \leftarrow s q$
return p
Note that in each iteration

- sum of squares remains the same
- s decreases

Sine and Cosine

Of course, we need sin and cos all the time!
Non-DSP libraries use Taylor expansions, which are inefficient
However, we most often need to generate both $\sin (\omega n)$ and $\cos (\omega n)$ for increasing $\mathrm{n}=0,1,2,3,4 \ldots$

1. We know how to update $\sin (\omega n)$ using a difference equation

$$
\sin (\omega(n+1))=2 \cos (\omega) \sin (\omega n)-\sin (\omega(n-1))
$$

which requires 2 initial values
2. Both sin and cos together is easy since $e^{i \omega(n+1)}=e^{i \omega} e^{i \omega n}$ which is the same as the trig identities:

$$
\begin{aligned}
& \sin (\omega(n+1))=\cos (\omega) \sin (\omega n)+\sin (\omega) \cos (\omega n) \\
& \cos (\omega(n+1))=\cos (\omega) \cos (\omega n)-\sin (\omega) \sin (\omega n)
\end{aligned}
$$

So from a single pair we can continue
However, both methods may suffer from error accumulation

CORDIC

The COordinate Rotation for Dlgital Computers (CORDIC) algorithm is an iteration for calculating elementary functions using only addition and binary shift
It was described in 1959 by Volder (and refined Walther) and was used in the first scientific hand-held calculator (HP-35)
It computes 1 bit / iteration
and so is great for hardware implementations but has a conditional and so breaks pipelines
CORDIC can simultaneously compute these pairs of functions

- $\sin (\theta)$ and $\cos (\theta)$
- $\sinh (\theta)$ and $\cosh (\theta)$
- $\sqrt{x^{2}+y^{2}}$ and $\tan ^{-1}\left(\frac{\mathrm{y}}{\mathrm{x}}\right)$
- $\sqrt{x^{2}-y^{2}}$ and $\tanh ^{-1}\left(\frac{y}{x}\right)$
- $\sqrt{\mathrm{x}}$ and $\ln (x)$
- e^{x} (alone)

The main idea behind CORDIC for sin/cos

An arbitrary angle θ in the $1^{\text {st }}$ quadrant [$0, \pi / 2$] can always be written as a sum of angles $\pm \alpha_{i}$ where $\tan \left(\alpha_{i}\right)=2^{-i}$

For example,

$$
\theta=\sum_{k=0}^{\infty}\left(\pm \tan ^{-1} 2^{-k}\right)
$$

$90^{\circ}=\alpha_{0}+\alpha_{1}+\alpha_{2}+\alpha_{3}-\alpha_{4}+\alpha_{5}+\ldots$
$60^{\circ}=\alpha_{0}+\alpha_{1}-\alpha_{2}+\alpha_{3}-\alpha_{4}-\alpha_{5}+\ldots$
$30^{\circ}=\alpha_{0}-\alpha_{1}+\alpha_{2}-\alpha_{3}+\alpha_{4}+\alpha_{5}+\ldots$
$15^{\circ}=\alpha_{0}-\alpha_{1}-\alpha_{2}+\alpha_{3}+\alpha_{4}-\alpha_{5}+\ldots$

\mathbf{k}	$\boldsymbol{t a n}^{-1} \mathbf{2}^{-\mathbf{k}}$
0	45°
1	26.566°
2	14.036°
3	7.125°
4	3.576°
5	1.790°
\ldots	\ldots

Note that multiplication by $\tan \left(\alpha_{i}\right)$ is actually a right shift

CORDIC for sin/cos

Recall that coordinate rotations in the plane are performed by

$$
\begin{aligned}
\binom{x^{\prime}}{y^{\prime}} & =\mathbf{R}(\theta)\binom{x}{y} \\
\mathbf{R}(\theta) \equiv\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right) & =\cos (\theta)\left(\begin{array}{cc}
1 & -\tan (\theta) \\
\tan (\theta) & 1
\end{array}\right)
\end{aligned}
$$

We can reach an arbitrary point on the unit circle $(\cos (\theta), \sin (\theta))$
by starting from the point $(1,0)[\theta=0]$
and performing a coordinate rotation

$$
\mathbf{R}(\theta)\binom{1}{0}=\binom{\cos (\theta)}{\sin (\theta)}
$$

The coordinate rotation can be decomposed into the sum of angles $\pm \alpha_{i}= \pm \tan ^{-1} 2^{-k}$
So the $R(\theta)$ can be written as the product of matrices of the form

$$
\mathbf{M}_{i}=\left(\begin{array}{cc}
1 & -\frac{1}{2^{i}} \\
\frac{1}{2^{i}} & 1
\end{array}\right)
$$

No multiplications!

Multiplying by the M matrices
only requires addition/subtractions and left shifts
All that is needed is to finish off is to multiply once by all the $\cos \left(\alpha_{i}\right)$
but since cos is an even function we can precompute the product

$$
K \equiv \prod_{i=0}^{\infty} \cos \left(\alpha_{i}\right) \approx 0.607
$$

And instead of multiplying by K at the end
we can simply start with the vector $(\mathrm{K}, 0)$ instead of $(1,0)$!
Note that since the multiplicands are all inverse powers of 2
each iteration gives us another bit of accuracy (exponentially fast convergence!)

We can now give the full CORDIC algorithm
to simultaneously calculate the cos and sin of any angle in the $1^{\text {st }}$ quadrant

What do we do for the other quadrants?

The CORDIC algorithm

$$
\begin{gathered}
x \leftarrow K \quad \\
y \leftarrow 0 \\
z \leftarrow \theta \\
\text { for } \quad i \leftarrow 0 \text { to } b-1 \\
s \leftarrow \operatorname{sgn}(z)
\end{gathered}
$$

