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Signal similarity
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Signal similarity

We often need to know how similar two signals x and y are
for example, to detect the appearance of a single in noise

In radar we transmit a known signal
the signal propagates in space until it is reflected by a target
It then travels back and is received by the radar receiver

By accurately detecting the exact time that the signal is received
and subtracting the exact time it was transmitted
we can deduce the distance to the target
However, due to
= the 1/r?2 propagation loss
= the minute amount of energy reflected
the signal received is very weak
while the noise may be large

We need a very sensitive way to detect the known signal in noise
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Signal similarity

To compare two signals
we can compute the difference signal ® =x —y
and define similarity as its energy Eg being small

But that doesn’t work if (with respect to x)
= Yy has some gain
= VY is shifted in time

For example, if y = g x then the difference is & = (1-9) X
which is only small if g=1

We can derive something better from the energy Eg
EES = Zn(xn - yn)2

- annz -2 annyn'l' Znyn2
=E,-2C,, +E,

C,y Is called the (cross)correlation between x and y
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Correlation

Es = Ex—2C,y +E,
where E, and E, are the (constant) energies of the 2 signals

Note that when Egis minimal, C,, is maximal
so we say the signals are correlated when C, is large

C,y Is still large even if y has arbitrary gain with respect to x
since the gain is captured in the energy component

For example, ify = g x (and thus E, = g E,)
then ny =XnXnYn =0 2XnXn X, =g E,

What do we mean by large?

Ify =gx then C,, = /EE,
S0 a simple way to gauge the size of cross-correlation

is to compare it with ,/EXEy (it won’t be equal because of noise!)

However, C,, will not indicate similarity if y is shifted in time

Y(J)S DSP Slide5



Correlation

If C, is positive and large N
then x and y are correlated (similar) /\\/\

If C, is negative and large - >~
then x and y are anticorrelated /ﬁ\/\

If C.., IS zero (or very small
Xy y

then x and y are uncorrelated (different) /\A/m/\
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Correlation with lags

To take care of time shifts with define (m is called the correlation lag)

ny(m) = Zn xn yn—m

(m is called the correlation lag)
We now look for its maximum value (its pealk) - uisbiydhbdibisbbiiiyte sl
This peak corresponds to the optimal time shift

If there the correlation is significant (using the same criterion as before)
then we have found our similar signal

Note the difference between correlation and convolution
= in correlation both indexes increase
= Iin convolution one increases one decreases
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Highly correlated signals
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Financilal indicators

Normalized indicaters DAX Dow Jones MNasdagq

| | | | |
20110413 20110613 20110810 20111011 20111212 20120207 20120403 20120613

DAX, Dow Jones, Nasdaqg and gold prices from 2011-2016
Which signals are correlated? Anticorrelated?
Can you use this for prediction?
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Autocorrelation

We can define the autocorrelation C,,(M) =Y, X, Xp_m
which tells us how similar the signal is to itself

Of course a signal is always similar to itself!

But we use autocorrelation to see how similar a signal is
to a time shifted version of itself

A periodic signal has peaks at lags that are multiples of its period!

SO AN AN O ol S s
Since |C,,(m)| < E, itis useful to define the normalized autocorrelation

C.m) =C,m)/ E,

where |C,| £ 1

Why can autocorrelation be more accurate than using the FFT?
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Wiener filter

Pulse radars transmit a short (and thus low energy) distinctive pulse

\fu\f\f\)ﬂ }

|
and receive a delayed weak, noisy copy aftertime t= 2*c:R

TR

|
|
The Wiener filter finds t by building an MA filter ‘
with coefficients equal to the time reversed signal
The MA'’s convolution actually performs a correlation

—_—

__%_

ﬂ
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Prediction

Wiener’'s famous paper was named

Interpolation, extrapolation and smoothing of stationary time series
Where in modern terminology:
= smoothing = low-pass filtering

= interpolation = resampling (sampling at different time instants)
= extrapolation = prediction

We previously saw how Yule predicted sun-spots via an AR process
s*. = D b Sp_m Wwhere s*, is the estimate of s,,

Let’s directly derive the coefficient b for the simplest case (M=1)
We want to minimize the energy of the error signal e = y*-y

Z eZ — Z(Sn - S;)Z - Z(Sn - bl Sn—l)z - (1+b12)Es - 2b1CS(1)
Differentiating and setting equal to zero we find b; = C;(1) / Eq = c(1)

So, there is a connection between prediction and autocorrelation!

More generally, the coefficients are given by Yule Walker equations!
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Adaptive filters

We often would like to remove noise from a noisy signal
Sometimes we can access a signal that is highly correlated to the noise

For example, assume 2 microphones
1. air conditioner noise (,
2. speech x, + filtered air conditioner noise q’

In the simplest case
the filtering is a single-tap MA filter which adds a q,,_
S0y, =X, + aq,m Wwhereaand m are unknown

The idea is to find a and m by adapting our estimates of them
so this is called an adaptive filter

If a and g change over time
or even when we simply alter our estimates of them
then this is not a filter since it is not time invariant
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Adaptation

We can assume that

= the desired signal x and
= the noise

are uncorrelated

By finding the maximum cross-correlation
between g and y=x+q’ (which only looks for q!)
we can determine m and thus q,_,

But how do we find a ?

Estimate X*,=Y,-C0,m = Xn*(a-C)a,m

N

T /]
X > ’_k
q’a:
>

— x*
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The energy parabola

X*, = X, +(a-C) 9n.m

SO Epx=<x*>=<x2>+(a-C)?<Qg?*> +2(a-c)<xog>
Since x and g are uncorrelated the last term is zero

The energy is parabolic in ¢ with a single minimum

E

X*

@)
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Adaptation

Starting from x*, = X, + (a-C) 9p.m
The global minimum is for c=a and there x*, = X,
To find c we need to minimize the energy of x*,, as a function of ¢

E,-

X

C
\

a
This minimization is typically done via gradient descent (aka steepest descent)

What if we receive the noise and echoes of it? y,, = X, + 2, &, Un-m

The same thing can be done for a M-tap filter
using M-dimensional gradient descent
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Gradient descent

In gradient descent we choose a step size A
at each step we estimate the gradient (derivative of E)
and correctc at each stepbyc«c-A>d
The gradient points in the direction that E increases
SO we move in the opposite direction (minus sign)
The larger the gradient the further we move

for more complex problems

the energy is not parabolic
/ and may contain local minima
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Echo cancellation

Another common use of adaptive filters is echo cancellation

m Acoustic Echo Cancellation
e.g., for car hands-free units

= Line Echo Cancellation

hybrid

hybrid
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Echo suppressors

Telephony hybrids are not perfect
leaking some amount of echo is sent back to the speaker
If the echo delay is < 20 ms then this is not noticed
but round-trip delay for US coast-to-coast is > 50 ms
and for satellite conversations the delay is > %2 second

Before the advent of DSPs echo was removed by echo suppressors
that chose the louder direction and blocked the opposite direction
effectively making telephone conversations half-duplex
(this still sometimes happens with simple office phones)
For non-speech (fax, modems) echo suppressors are turned off
by sending a 2100 Hz tone
Echo suppression is a waste of full-duplex infrastructure
= conversation is unnatural
= hard to break in
m speaker hears dead line (so telephones artificially add sidetone)

LEC was one of the first applications of DSPs
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Echo cancellers

In a simplistic model of LEC the near end simply estimates the echo
and subtracts it to send clean (echo-less) speech to the far end
(of course the far end does the same)

speech

+
clean speech

yo) echo > -
G| |\ ? @
b3} —4— 2
c « o
echo
path

Real LECs have additional elements, including
= double-talk detectors (Geigel algorithm)
to freeze adaptation when both sides are speaking
= nonlinear processing (center clipping) to remove residual echo
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Realistic LEC

— — ~—{ NLP ——
1r l“_ 1'
. to
NEAR i doubletalk : adaptation )
END — | hybrid detector filter mechanism - I,'A R
END
4 i i
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LEC In action

The LEC mechanism
m places samples received from the far-end into the X buffer

= convolves them with the current filter (called the H register)
obtaining the echo estimate

m Subtracts the echo estimate from the near-end samples
How is the filter adaptation done?

Assume that only the far-end subscriber is talking
then the signal at the input to the subtracter is unwanted echo
generated by the near-end hybrid and telephone

The adaptation mechanism varies the filter coefficients
minimizing the energy at the output of the subtracter

If the far-end is quiet or double-talk is detected
the adaptation algorithm automatically stops updating
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Equalization

A problem that arises in data communications

distorting
channel

transmitter receiver

We can model the channel distortion as

m filtering Y(w) = H(w) X(w) i.e., y, = X hy X,
m adding noise y, = ) hyx,_1+ v,

Recovering the original signal

requires applying the inverse of the channel filter (equalization)
X(w) =G(w) Y(w)i.e., xp= 2 8 ¥n-I

For this we need to
= find the channel filter coefficients h;
= invert the filter g, cessnstsssassash 8

Equalizers are also used in stereo audio systems. Why ?
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Multipath

What happens when a signal is received over a primary (shortest) path
and also over delayed paths (e.g. reflections off buildings) ?

:u’i
The composite signal contains echoes / )
and is thus an MA filtered version of the original T \

S 1 e S ) B
T 1 O
0 T R R R Y
O T R Y B
maxdelayll_l l_l l—l l_l l—, l_l l—l L
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Finding the equalizer

If we start the transmission with a known signal
then finding the channel filter is a system identification problem

In particular, if we assume that the channel filter

= IS MA then we need to solve Wiener-Hopf equations
and the inverse filter will be AR why?

= IS AR then we need to solve Yule-Walker equations
and the inverse filter will be MA why?

Sometimes we can’t transmit a special known sequence - why?
for example, receiver may turn on at any time
then we need blind equalization

And even if we can, what if the channel changes over time? why?
for example, a mobile receiver

Then we need to adapt the equalizer over time
If we can derive a measure of received SNR
we can use gradient descent
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Using the equalizer

There are two ways to apply equalization G to compensate for H
= atthereceiverx=Gy=GHx=H1HXx

= at the transmitter (Tomlinson precoding) : transmit X’ = G X
and receiver automatically seesy = HG x =H H1 x

If the channel filter is not AR then the second way is better — why?

Because at frequencies where the filter has zeros
the channel frequency response is not invertible

That is, If at w, we have H(w,)=0
then no G(w,) can obey G(w,) H(w,) =1
and so information there is lost
Even if H(w,) is not exactly zero, but very small H(w,) = 0
G(w,) will have to be very large
and will lead to noise amplification
(we have been neglecting the additive noise until now ...)

However, Tomlinson requires a back-channel!
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Speech signal processing
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Application: Speech

Speech is a wave traveling through space
at any given point in space it is a signal in time

The speech values are pressure differences (or molecule velocities)

There are many reasons to process speech, for example
m Speech storage / communications

m Speech compression (coding)

= speed changing, lip sync

= text to speech (speech synthesis)

m speech to text (speech recognition)

= translating telephone

= speech control (commands)

m speaker recognition (forensic, access control, spotting, ...)
= language recognition, speech polygraph, ...

= Voice fonts
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Speech in the time domain

D IGITA L SIGNA L PROCESSING

Why don’t we see the letters?
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Speech in the frequency domain
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Phonemes

A phoneme is defined to be the smallest acoustic unit
that can change meaning

Different languages have different phoneme sets
and their speakers hear sounds differently

iIn Hebrew there is no TH phoneme, so speakers substitute Z
in Arabic there is no P phoneme, so speakers substitute B
in English there is no > phoneme, so speakers substitute K
In Japanese there is a single phoneme

somewhere between English R and L

Some languages have many phonemes
= Danish has 25 different vowels

= Taa has over 150 consonants

= Xhosa has 3 different click sounds

Some have very few
= Piraha has 3 vowels and 8 consonants
= Hawaiian has only 3 consonants
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Some phoneme types

Vowels Consonants
« front (heed, hid, head, hat) * nasals (murmurs) (n, m, nQ)
 mid (hot, heard, hut, thought) » stops (plosives)
* back (boot, book, boat) * voiced (b,d,q)
« dipthongs (buy, boy, down, date) * unvoiced (p, t, k)
« fricatives
* voiced (v, that, z, zh)
Semivowels « unvoiced (f, think, s, sh)
* liquids (w, I) . affricatives (j, ch)
* glides (1, y) « whispers (h, what)
 gutturals (n,y)
* clicks

* etc. etc. etc.
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Speech sampling

Telephony speech is from 200 to 4000 Hz
this is not enough for all sounds we can hear
not really even enough for speech (e.g., S- F)
high quality audio is from 20 Hz to over 20 kHz

By the sampling theorem we need 8000 samples per second
high quality audio typically sampled at 44.1 / 44 | 48 kHz

If we sample at 8 bits per sample
we perceive significant quantization noise (see next slide)

So, let's assume we should sample at 16 bits per sample
actually 13-14 bits is enough

So we need 8000 samples/sec * 16 bits/sample = 128 kbits/sec
to faithfully capture telephony quality speech

Information theory tells us that speech actually only carries
a few bits per second

So we should be able to improve this
but we need to learn more about the speech signal!
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What’s quantization noise?

When we quantize a signal value s, to the closest integer (or rational)

we add an error value x, = s + ;
| n nt Un E’\i\ A\ﬁ }ﬁ\l
Assuming the q,, samples are uncorrelated \ VIEENY ;‘
the quantization noise is white noise { ? % e
: . : ! ¥ \ /
We hear white noise as a hiss umEar ;
g, € [-¥2 2™, Y2 27] \w’? ?\“}/
(or [-¥2 21, %2 2] if we assume the signal isin [-1, 1])

So the more bits we use the better the Signal to Noise Ratio

Each additional bit reduces the SNR by a factor of 2 (3 dB)
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Speech biology

To understand the speech signal
we need to learn some biological signal processing

There are two separate systems of interest

m Speech generation system
— lungs
— windpipe
— vocal folds (cords)
— vocal tract (mouth cavity, tongue, teeth, lips, uvula)
— Broca’s area (in left hemisphere)

m Speech recognition system
— outer ear
— ear drum and hammer
— cochlea, organ of Corti (cilia)
— auditory nerve
— medial geniculate nucleus (in thalamus)
— auditory cortex and Wernicke’s area (in superior temporal gyrus)

These two systems are not well matched
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Speech Production Organs

Nasal N _ Hard
cavity [ M Palate

Teeth

Lips 2 ﬂ- IE31™ Uvula
Mouth A H |

cavity Pharynx

Tongue
Esophagus

Trachea
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Speech Production

Air from lungs is exhaled into trachea (windpipe)

Vocal cords (folds) in larynx can produce periodic pulses of air
by opening and closing (glottis)

Throat (pharynx), mouth, tongue and nasal cavity modify air flow
Teeth and lips can introduce turbulence

Basic function — filter an excitation signal
(we will see that the filter can be modeled as an AR filter)
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Hearing Organs
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Hearing Organs

Sound is air pressure changing over time (and propagating through space)

Sound enters the external ears which

= collect as much sound energy as possible (like a satellite dish)
= differentiate between right/left and front/back

= even differentiate between up and down

Sound waves impinge on outer ear enter auditory canal
Amplified waves cause eardrum to vibrate

Eardrum separates outer ear from middle ear

The Eustachian tube equalizes air pressure of middle ear
Ossicles (hammer, anvil, stirrup) amplify vibrations

Oval window separates middle ear from inner ear

Stirrup excites oval window which excites liquid in the cochlea
The cochleais curled up like a snail

The basilar membrane runs along middle of cochlea

The organ of Corti transduces vibrations to electric pulses
Pulses are carried by the auditory nerve to the brain
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Cochlea

Cochlea has 2 1/2 to 3 turns (for miniaturization)
were it straightened out it would be 3 cm in length

The basilar membrane runs down the center of the cochlea
as does the organ of Corti

15,000 cilia (hairs) contact the vibrating basilar membrane
and when it vibrates they release neurotransmitters
stimulating 30,000 auditory neurons

Cochlea is wide (1/2 cm) near oval window and tapers towards apex
and is stiff near oval window and flexible near apex

hence high frequencies cause vibrations near the oval window
while low frequencies cause section near apex to vibrate

Basic function — Fourier Transform

(by overlapping bank of bandpass filters)
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Voiced vs. Unvoiced Speech

We saw that air from the lungs passes through the vocal cords
When open the air passes through unimpeded
When laryngeal muscles close them glottal flow is in bursts

VA /\ /\ A

When glottal flow is periodic we have voiced speech
= Dbasic interval/frequency called the pitch (f;)
= pitch frequency is between 50 and 400 Hz

You can feel the vocal cord vibration
by placing your fingers on your larynx

A laryngeal microphone directly perceives the sound at this point
even opening you mouth very wide doesn’t work very well

Vowels are always voiced (unless whispered)
Consonants come in voiced/unvoiced pairs
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Exercise

Which are voiced and which are unvoiced ?

B1 Dl Fl G’ J! Kl P’ Sl T’ V’ W’ Zl
Ch, Sh, Th (the), Th (theater), Wh, Zh

Which unvoiced phoneme matches the voiced one?

B
D
G
V
J

Th (the)
W

Z

Zh
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Excitation spectra

Voiced speech is periodic and so has line spectrum
Pulse train is not sinusoidal due to short pulses of air
and is rich in harmonics (amplitude decreases about 12 dB per octave)

pitch > f

Unvoiced speech is not periodic
Common assumption : white noise (turbulent air)

> f
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Effect of vocal tract

So what is the difference between all the (un)voiced sounds?
The sound exiting the larynx enters the mouth cavity and is filtered

Mouth and nasal cavities have resonances (poles)
similar to blowing air over a bottle

“ \)'\/
& =

Thus the sound exiting the mouth is periodic (due to periodic excitation)
but with some harmonics strong and some weak

Resonant frequencies depend on geometry
In particular mouth opening, tongue position, lip position
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Effect of vocal tract - cont.

Sound energy at resonant frequencies is amplified
Frequencies of peak amplification are called formants

F1

[

A
F2

F3

F4

frequency response

frequency

[
»

unvoiced speech

)
\/
T/\ﬂmk

FO

f\ voiced speech

v

v

Y(J)S DSP Slide 45



Cylinder model(s)

Rough model of throat and mouth cavity (without naval pathway)

[
oice \
\E/xcitation > O () ( ) >
\

With nasal pathway \\
destructive

\oice / interference
| —

Excitation




Formant frequencies

m Peterson - Barney data (note the “vowel triangle”)

f,

3500

3000

2000

2000

1500

1000

500

/

%
%
w ¥ ¥ N
1Y IH
iy IH
1Y 1y
Y 1y IH
y 1Y IH ., EH EH
vy Yoy Y H EH EH AE
Iy IH EH
EHEH AE
i BH EHEH EH e NE A
% EH EH
Iy IH EHEH EHEH - AEAE AE AE AE AE
[\ EH EH E AE AE AE AE
IH :: " EH EHER ER AE AEAE
Y RiH H EHEH EHAE AEPE ap  AE AE AE AE
E AE
y HEHAE AE AE AE  AE
H T AE AE AE  AHAH AH
AEAE AE AH
B ER B8 AH , AHAH AH
Er UH cr AE AH AH
jw ER ERER T ER A4 AH
uUH UHER AO
Uw
U AO
AO
W, RO AO
Uw UW  A0AOAO AO
250 500 750 1000 1250

AE = hat
AH = hut
AO = ought
EH = head
ER = hurt
IH = hit
Y = heat
UH = hood
UW =who
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Sonograms

4000 —
30004 = - — =3
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DIGITAL SIGNAL PROCESSING

Which sounds are voiced?
Where is the pitch?
Where are the formants?

Y(J)S DSP Slide 48



Simple model for speech generation

Pulse f\ /\ ﬂ‘
Generator P

)\ J)’ II\/\'\/E\
svl\fi/t\cfh G synthesis s g
filter
White Noise _._T
Generator TN
VA




LPC Model

This model was invented by Bishnu Atal (Bell Labs) in 1960s

pulse generator produces a harmonic rich periodic impulse train
white noise generator produces a random signal
U/V switch chooses between voiced and unvoiced excitation

varying gain allows to speak loudly or softly
(typically placed before the filter)

LPC filter amplifies formant frequencies
(no zeros but peaks - all-pole or AR IIR filter)
Note: standard LPC doesn’t work well for nasals
destructive interference creates zeros in the frequency response

output resembles true speech to within modeling error
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Can LPC compress speech?

Let’s estimate the number of bits/second required to
capture speech (for transmission or storage) using the LPC model

= we need to model several times per phoneme
— no-one can produce more than a few phonemes per second

— 20-100 frames per second is reasonable, let’'s assume 25

= we need to specify the pitch (between 50 and 400) in Hz
— 1 byte is more than enough (no-one hears the difference of 1 Hz!)

= we need 1 bit for the U/V switch
— but don’t have to waste a bit
since we can encode as pitch with zero frequency
= we need to capture the gain
— 1 byte is enough (our ear is not that sensitive to small gain changes)

= the AR filter has 4 formants
— S0 we need 8 values (4 frequencies and 4 amplitudes or 8 poles)
and once again will assume 1 byte for each

Altogether we need 25 * (10 bytes * 8 bits/byte) = 2000 bits/sec
much better than 128,000 bits/sec
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LPC ?

Why is this model called Linear Predictive Coding ?
The synthesis filter performs

Sn = Zm bm Sn-m

which predicts the next signal sample
based on a linear combination of previous samples

Most of the time we can forget about the glottal excitation
but this introduces an error e,

So we define
§n = en + Zm bm Sn-m

This defines a classic AR model, solvable using Yule-Walker
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How do we do it?

Given a frame of speech samples (Xg, X1, X5, -+ X\.1)
how do we find the LPC parameters?

= the gain is easy to find — it requires calculating the energy

= U/V can be found by observing the spectrum
If lines then voiced, if continuous then unvoiced

= the pitch can be determined by
— lowest spectral peak or frequency difference between peaks
— autocorrelation

= since the input to the AR filter can now be created
and the output is the speech samples
we now have an AR filter system identification problem
so the filter can be found by solving the Yule-Walker equations
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Does it work?

An early commercial use of LPC
was the Texas Instruments Speak & Spell chip
which used LPC-10 (10 AR coefficients)

An early software implementation was Klattalk

Pure LPC speech sounds robotic (Steven Hawking speech) because
= we need to add prosodic modeling

= we need to post process to clean up estimation errors
e.g., pitch doubling

= we need to add frame-to-frame processing
e.g., pitch needs to change smoothly ‘ ‘

but most importantly

= pitch pulses are not deltas or on-off rectangles
they have waveforms that influence the sound 1 1

| Do [ Do
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Better speech compression

Compressing telephony quality speech
was once a tremendously important problem

The International Telecommunications Union set goals
to reduce speech transmission rates by factors of 2

We can thus compare:

= 128 kbit/sec — linearly quantized speech

= 64 kbit/sec — Pulse Code Modulation (logarithmic quantization)
= 32 kbit/sec — Adaptive Delta PCM

= 16 kbit/sec was never standardized

N 8 kbit/sec — Code Excited LPC

But we now need to understand some psychophysics
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Psychophysics

Psychophysics is the subject that combines psychology and physics

Its fundamental question is the connection between
= external physical values (light, sound, etc.)
= Iinternal psychological perception

Ernst Weber was one of the first to investigate of the senses

In a typical experiment

a subject is asked in which hand there are more coins
= 1 coinin 1 hand and 2 coins in the other is easily noticeable
= 10 coinsin 1 hand and 11 coins in the other is just noticeable
= 41 coinsin 1 hand and 42 in the other is not noticeable

But how could this be?
Can one notice the difference of 1 coin or not?
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Weber

Weber defined the concept of the Just Noticeable Difference (JND)
the minimal change produces a noticeable difference

Weber’s important discovery was that JND varied with signal strength
In fact, Weber found
the sensitivity of a subject to X is in direct proportion to the X itself

that is
one notices adding a specific percentage not an absolute value

Al=kl

Thus
= the number of noticeable additional coins
IS proportional to the number of coins

and the same is true for

= saltiness of salty water /

= length of lines ‘/ /
= Strength of sound
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Fechner’s law

Gustav Theodor Fechner was a student of Weber
While viewing the sun in order to discover JNDs he was blinded

He later regained his sight and took this as a sign
that he would solve the psychophysical problem

Simplest assumption: JND is single internal unit
Weber’s law says we perceive external values multiplicatively
Fechner concluded that internal unit is the log of the external one:

Y=A logl + B

People celebrate the day he discovered this
as Fechner Day (October 22 1850)
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Dynamic range

Logarithms are compressive

Fechner’s law explains the fantastic ranges of our senses

Sight (retinal excitation)

= minimum: single photon

= maximum (harm threshold): direct sunlight
= ratio: 101>

Hearing (eardrum movement)

= minimum: < 1 Angstrom 10-1° meters

= maximum (harm threshold): >1 mm (behind a jet plane)
= ratio: 108

Alexander Graham Bel defined to be log,, of power ratio
A decibel (dB) one tenth of a Bel
d(dB) =10 log,, P, /P,
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Fechner’s law for sound amplitudes

According to Fechner’s law, we are more sensitive at lower amplitudes

We perceive small differences when the sound is weak
but only perceive large differences for strong sounds

Companding is the compensation
for the logarithmic nature of speech perception

We need to adapt the logarithm function
to handle positive/negative signal values

J

If we could sample non-evenly
then this can be exploited for speech compression
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Fechner’s law for sound frequencies

octaves, well tempered scale

Critical bands

Frequency warping | | | | |
AuUEney Warbing - p—— | > f

Melody 1 KHz = 1000, JND afterwards M ~ 1000 log, ( 1 + f,, )

Barkhausen can be simultaneously heard B~ 25+ 75 (1 + 1.4 f2, )0-69

excite different basilar membrane regions
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2 more psychological laws

Respond to changes
Our senses respond to changes — not to constant values

A

Masking

Strong tones block weaker ones at nearby frequencies
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PCM

8 bit linear sampling (256 levels) is noticeably noisy

But due to
— prevalence of low amplitudes in generated speech
— logarithmic response of ear
we can use 8-bit logarithmic sampling ( with sgn(s) * log(]|s|) )

G.711 gives 2 different logarithmic approximations
. l+ﬂ»s—]3|—

Emaz ﬁ.— North America p = 255

Smar

AS - 0 < Jﬁ'_ < L
A'IaW & — Sgn(s) Smar l+i-+({:(Aj ) Smaz A Rest Of World
n(A-Lsl 1 s

Lol <1 A=8756

Smar

plaw & = sgn(s)

Smal

1+1n(A)

Although very different looking they are nearly identical
G.711 standard further approximates these expressions
by 16 staircase straight-line segments (8 negative and 8 positive)
Note that p-law has horizontal segment through the origin (plus and minus zero)
while A-law has a vertical segment -



Logarithmic sampling
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DPCM

Due to low-pass character of speech excitation
differences are usually much smaller than signal values
and hence require fewer bits to quantize
This would not be the case for white noise!

Simplest Delta-PCM (DPCM) : quantize first difference signal AS

Delta-PCM : it is even better to quantize
the difference between the signal and its prediction

§n =P (Sn—l y Sp-2 1 +++ 1 SN ) = Zi Pi SN
Since we predict using linear combination
this is a simple type of linear prediction

Delta-modulation (DM) : use only the sign of difference (1bit DPCM)

Sigma-delta (1bit) sampling : oversample, DM, trade-off rate for bits
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Deltas are usually small

The first difference requires fewer bits
If 4 bits is enough then we need 32 kb/s

il
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DPCM with prediction

If the linear prediction works well, then the prediction error
&y = Sp - §n
will be lower in energy and whiter than S, itself !

Only the error is needed for reconstruction,
since the predictable portion can be predicted S, = S, + &!

S, ' P—e,—P . =S,
prediction o g prediction
. _ —D-OS S e ) ——
filter n n filter
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Open loop prediction

The encoder (linear predictor) is present in the decoder
but there runs as feedback

The decoder’s predictions are accurate with the precise error €,

but it gets the quantized error €,
and as the error accumulates the signals diverge!

»Q—»—’é—»—|Q—>—<

™\
n L/

N
Z
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Side information

There are two ways to solve the error accumulation problem ...

The first way is to send the prediction coefficients
from the encoder to the decoder
and not to let the decoder derive them

The coefficients thus sent are called side-information

Using side-information means higher bit-rate
(since both €, and the coefficients must be sent)

The second way does not require increasing bit rate
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To ensure that the encoder and decoder stay “in-sync”

we put the entire decoder

iIncluding quantization and inverse quantization
Into the encoder

Closed loop prediction

Thus the encoder’s predictions are identical to the decoder’s
and no model difference accumulates

€n

Sn— P

Q

—

L.

1Q

_,.6

€

*

n

1Q

—

/a
\
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Two more forms of error

For DM there is another source of error (that depends on step size)

TERNEN

0

much too large

A

Atoosmall AQK A toolarge
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Adaptive DPCM

Speech signals are very nonstationary

We need to adapt the step size to match signal behavior
— increase A when signal changes rapidly
— decrease A when signal is relatively constant

Simplest method (for DM only):
— if present bit is the same as previous multiply A by K (K=1.5)
— if present bit is different, divide A by K
— constrain A to a predefined range

More general method :
— collect N samples in buffer (N =128 ... 512)
— compute standard deviation in buffer

— set A to a fraction of standard deviation
- send A to decoder as side-information or
» use backward adaptation (closed-loop A computation)
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G.726

G.726 (standard for international telephony) has
— adaptive predictor
— adaptive quantizer and inverse quantizer
— adaptation speed control
— tone and transition detector
— mechanism to prevent loss from tandeming

computational complexity relatively high (10 MIPS)
32 kbps toll quality
24 and 16 Kbps modes defined, but not toll quality

G.727 same rates but embedded for packet networks

ADPCM only exploited general low-pass characteristic of speech

What is the next step?

Y(J)S DSP  Slide 73



AVQSBC

A good quality 16 kb/s speech encoder is obtained
by exploiting Fechner’s law for sound frequencies
The idea is to use Sub-Band Coding

We divide the signal in the frequency domain
using perfect-reconstruction band-pass filters

The frequency widths are small at low frequencies
but large at high frequencies

0 Hz 4000 Hz
Each subband is separate quantized using Vector Quantization

This technique was never standardized for speech
but SBC was standardized for music as MP3 audio
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LPC10

For military-quality voice

180 sample frame (44.4 frames per second)
are encoded into 54 bits as follows:

= Pitch + U/V (found using AMDF) 7 bits

= Gain 5 bits

= 10 reflection coefficients
— first two coefficients converted to log area ratios
- L, L,, a3, @, 5 bits each
— as, 84, a5, ag 4 bits each
— a9 3bits a;, 2bits 41 bits

= 1 sync bit 1 bit
54 bits 44.44 times per second results in 2400 bps

By using VQ one could reduce bit rate to under 1 Kbps!

LPC-10 speech is intelligible, but synthetic sounding
and much of the speaker identity is lost !
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CELP

The true S,, is obtained by adding back the residual error signal

s, =S, t g,

n

So if we send €, as side-information we can recover S,

g, 1S smaller than s, so may require fewer bits !
but ¢, is whiter than s, so may require many bits!

Can we compress the residual?
Note that the residual error is actually the LPC filter’s excitation

The idea behind Code Excited Linear Prediction
IS to encode possible excitations in a codebook of waveforms
and to send the index of the best codeword
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Analysis By Synthesis

To find the best code word we try them all (exhaustive enumeration)
although algebraic tricks save computation
We choose the code word with the least error

- Y« b N Compute
Sn 31/ energy
Y
=\ |
CB [ LPC |
— 4
find

minimum
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Perceptual weighting

But we don’t want the approximation
that looks the most like the real signal

We want the approximation
that sounds the most like the real signal
Now is the time to use psychophysics

Instead of computing the energy of the difference
we use a perceptual measure of similarity
that takes masking, etc. into account
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G.729

The standard speech compression in cellular
and very popular in Internet and other applications

Encodes 10 ms frames (100 frames per second) into 80 bits
resulting in 8000 bits per second

filter coefficients18 bits pitch 8 bits
gain CB 14 bits adaptive CB 5 bits
pulse positions 26 bits pulse signs 8 bits parity check 1 bit
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Speech recognition

You might think that speech recognition could be performed thus:
m extract speech features (e.g., LPC, Cepstrum) for speech frames
m classify several successive frames into phonemes

= combine phonemes into words

Unfortunately, that doesn’t work for many reasons
= phonemes are pronounced differently depending on context
= phonemes are pronounced differently depending on accent

= phonemes may not be pronounced at all in rapid speech
= nonlinear time warping

3000
I
2000
H H
2000 v jy'HH
1500

1000 YW

500

250 500 750 1000 1250
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Backtracking

The lower levels of the human auditory tentatively identify
the most probable phoneme

But as we continue listening
the higher levels continuously backtrack
and select lower probability ones if needed

To understand this backtracking we can use an analogy
from even higher levels of speech understanding

What does the word FIRE mean in the following sentence?
THE MAN SHOUTED

FIRE !

FIRE THE GUN !

FIRE THE GUN MAKER !
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Why don’t we notice this?

All of this happens unconsciously in the background
but involves higher levels of the cortex

Example 1

People who do not understand a language
can not reliably transcript phonemes in that language

Example 2

People who understand a language well
can successfully understand in very low SNR

Example 3
What am | saying?
HOW TO RECOGNIZE SPEECH
HOW TO WRECK A NICE BEACH
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Levenshtein distance

Automatic typing correction mechanisms and spelling correction
find the closest known word to an unknown one

How do we define closeness?

The Levenshtein distance between 2 strings (not necessarily equal length)
IS defined as the minimal cost to transform 1 string to the other

Where each of the following has a defined cost

= deletion digital — digtal

= insertion signal — signall

m Substitution processing — prosessing
— In typing the cost may depend on how close the keys are
— In spelling correction the cost may depend on the sounds

What is the unity weighted Levenshtein distance
between digital and dijtal?

How do we find the minimum cost?
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Levenshtein distance (unity weighting)

What is the Levenshtein distance between prossesing and processing ?

s|s |e|/s|i|n|g

o

r

Rules:

1 enter square
from left (deletion) cost =1

2 enter square
from under (insertion) cost = 1

3a enter square

from diagonal
and same letter cost =0

3 b enter square

from diagonal
and different letter
(substitution) cost=1

4 Always use minimal cost

Y(J)S DSP Slide 84



Levenshtein distance - cont.

Start with O in the bottom left corner

o 9
218
...|7
Wieg
(D,;
@,
03
o2
Ml
o0 112|314 |51]|6]| 7|89
olp|lr|lo|cle|s|s|1|n|g
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Continue filling in table

Levenshtein distance - cont.

U\9
al 8
.|-|7
w6
9| 5
Wil 3]2]2]2
Wisi2|11 |12
ol 2110 1]2
M1 lo] 1] 2]3
Q_|01234
o|lplr|lojc|e

Note that
only local
computations
and decisions
are made
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Levenshtein distance - cont.

Finish filling in table

The global

resultis 3!
So the

Levenshtein

distance is 3

S

9
S

6

o |lplrlo|c|le|s|s|1|n|g
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Levenshtein distance - end

Backtrack to find path actually taken

o 98| 7 |76 [5]|5]5 [4]3
aglsl|7|6 6|5 |4a|ala|3]4
Al 716|554 |3]|3|3|5]65
wi6 |54 a3 2|34 |a]s5s
Q|54 3|32 |3|3[3]a]5
@i 4|32 |22 2]2[3]4]5
wi 3|21 |1|2 2|34 ]|5]|6®6
o210 |12 |3|4]|5 |67
Mlilo|l 1|23 4|56 ]|7]|s8
gl 01| 2|34 |5|6|7|8]9
p/lriolcle|ls|s|1|n|g

Remember:

The question is
always how we
got to a square

We see that the
distance is 3

Since, e.g.,
1. substitution
2. insertion
3. deletion
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Generalization to DP

If not all substitutions are equally probable
then we add the cost function instead of 1

We can also have costs for insertions and deletions

Dij=min( Di;;+Ciyi1j5 Digja*tCigjarjs Dijat+ Cigjor )

And even more general rules are often used

This algorithm is called Dynamic Programming

and many other names

— Viterbi algorithm

— Levenshtein distance
— Dynamic Time Warping

but they are all basically the same thing!

The algorithm(s) are computationally efficient
since they find a global minimum based on local decisions

Y(J)S DSP  Slide 89



DTW

DTW uses the Dynamic Programming technique
for matching spoken words

The input is a feature vector (e.g., LPC, cepstrum)
and is separately matched to each dictionary word feature vector
and the closest word is the winner!

The cost for each substitution needs to represent
how similar the two sounds sound

In isolated word recognition systems
energy contours are used first to isolate the words
linear time warping is then used to normalize the duration
but special mechanisms are used for endpoint location flexibility

In connected word recognition systems
the endpoint of each recognized utterance is used
as a starting point for searching for the next word

In speaker-independent recognition systems
multiple templates are used for each reference word
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Markov Models

An alternative to DTW is based on Markov Models

A discrete-time left-to-right first order Markov model

4f e

ntap=1,

State a22 +a,,=1,
etc.

A DT LR second order Markov model

In Markov models future states depend only on the current state
What is the probability of remaining stuck in a state?
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Example

State A B C D

Y

0.5 0.5

Which strings are possible? What are their probabilities?

= ABCD p = 0.5*0.5*1 = 0.25
= ABD p=0.5*0.5=0.25
= ACD P=0.5=0.5

Note that the probabilities sum to 1 (of course!)
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State

ABCD
AABBCCDD
ABBBBBBBCD
ACBD
ABBCDCCD

Example

o.sQ 05 Q 0.5Q 0.5Q
0. 05 0.5 05
A B C D

Which strings are possible?

Which string is most probable?
What is its probability?

Which strings are 2" most probable?
What are their probability?

What is the probability of an infinite string?
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Markov Models - cont.

General DT Markov Model

Model jumps from state to state with given probabilities

eg. 11112233333333444
or 11222222222444
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Markov Models - cont.

Why use Markov models for speech recognition?
— states can represent phonemes (or whatever)
— different phoneme durations (but exponentially decaying)
— phoneme deletions using 2"d or higher order

So time warping is automatic !
How do we use it?
We first build a Markov model for each word

Then, given an utterance
we select the most probable word
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HMM

But the same phoneme can be said in different ways
so we need a Hidden Markov Model

12 dy3 dgy
b

14

4

2 3 B o
: a;; are transition probabilities
acoustic | N
phenomenon b, are observation (output) probabilities

by + by, + b3+ by =1,
0,1 + Dy + Dy3+ by =1,
etc.
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HMM - cont.

For a given state sequence S; S, S; ... Sy
the probability of an observation sequence O; O, O, ... O

is P(O|S) =Dbs,0, bs,o0, bs,0, -+ bs,o;

For a given hidden Markov model M = { states, a, b }

the probability of the state sequence S; S, S; ... S;
IS (the initial probability of S, is taken to be [Js,)

P(S|M) = Ps, as,s, as,s, as,s, -+ As;,S;

So, for a given hidden Markov model |V

the probability of an observation sequence O, O, O; ... O;
IS obtained by summing over all possible state sequences
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HMM - cont.

P(O] M) = 2 P(O|S) P(S|M)
=Y Tts, Ds,0, as,s,Ds,0, as,s,Ds,0,

So for an observation sequence we can find

the probability of any word model
(but this can be made more efficient using the forward-backward algorithm)

How do we train HMM models?

The full algorithm (Baum-Welch) is an EM algorithm

An approximate algorithm is based on the Viterbi (DP) algorithm
(Sorry, but beyond our scope here)
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The new world

DTWs and HMMs were the state of the art until recently
DTWs have little training time but long run times
HMM have long training times but short run times

Recently Deep Neural Networks have taken over many applications

DNNSs
use essentially no knowledge about the speech signal
require astronomical amounts of data to train
have very long training times
provide no reasoning as to their decisions
can frequently outperform classical methods

but can also fail catastrophically

and can be subject to adversarial attacks
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Communications
signal processing

Y(J)S DSP  Slide 100



Application: Data Communications

Communications is moving information from place to place

Information is the amount of surprise, and can be quantified!
Communications was originally analog — telegraph, telephone

There are many forms of digital communications that we use every day

= Mobile (cellular)
— Internet
— from 4G voice is simply packet data

= Television
— DVB (ldan plus)
— Cable TV (DOCSIS)

= Home Internet access
— DSL (ADSL, VDSL)
— Cable modem (DOCSIS again)
= Internet of Things
— smart home / smart city
— Industry 4.0 YOS bsP Shaeton



Digital Communications

All physical channels
= have limited bandwidth (BW)
= add noise (so that the signal to noise ratio SNR is finite)
so analog communications always degrades
and there is no way to completely remove noise

In analog communications the only solution to noise
IS to transmit a stronger signal
since later amplification amplifies N along with S

Communications has become digital
= digital communications is all or nothing
perfect reception or no data received
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Shannon’s Theorems

1. Separation Theorem

analog
bits signal bits

info source lchannel lchannel channell source info

encoder | | encoder decoder | | decoder

2. Source Encoding Theorem
Information can be guantified (in bits)

3. Channel Capacity Theorem
C=BWlog, (SNR +1)

Warning: Shannon’s Laws are not constructive
they only give us targets to aim for!

Y(J)S DSP  Slide 103



Modulation

We already learned that modulation means
changing parameters of a signal in order to carry information

We previously saw AM and FM in which
the signal carried analog information

Shannon leads us to ask how a signal can carry digital information

A simple example would be to modulate the amplitude of a DC signal
allowingittobeOor 1
We could also modulate the amplitude of a sinusoid (like in AM, but 0/1)

| 11
| ||| I || || I || L
i LAt |||||||I | |||||'|'
I mt'l' i m't'u'ul 1|

Since we will often need bidirectional transfer of information
It is convenient to package the modulator and demodulator
In a single box called a modem

(A similar box for analog modulation is called a transceiver)
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Digital communications

Shannon’s theorems taken together
explain why all communications has become digital

Analog communications always have quality degradation

Vinyl records are very limited in spectral and dynamic range
and add a tremendous amount of noise

A Compact Disk is essentially undistinguishable form the original

When recording from tape (e.g., cassette) to tape
each successive recording is noisier, until only noise remains

Copying CD to CD the 1000% copy is indistinguishable from the 1st

Scratching a CD/DVD, either there is no effect
or nothing works at all (in video there can be missing squares)
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The simple reason

Digital communications inherit a fundamental property of the bit
it is either O or 1 — on of off — perfect or nothing

Either you receive exactly what was sent
or you receive nothing (complete garbage)

But why is it perfect and not always nothing?

If | transmit a voltage of 3.14159... volt, but you receive 2.71828... volt
even if | tell you that there was noise and that isn’t what | sent
you can’t possibly figure out the right value

If | transmit a bit 1 and we obey Shannon’s laws
you should receive a bit O

But even if you don’t and | tell you that you received the wrong value
then you know that the correct answer is 1 (error correction)
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Separation Theorem

The separation theorem is logically the first
even if chronologically the last

The theorem states that the optimal method of transporting
any kind of information (analog or digital) involves
— properly converting it into digital format (Shannon’s 2"d theorem)
— properly modulating an analog signal (Shannon’s 3' theorem)
— recovering digital information from the received analog signal
— recovering original format information from the digital information

Note that
— the source decoder is the inverse of the source encoder

Input with the digital format it reproduces the original information
— the channel decoder is the inverse of the channel encoder
Input with the undistorted transmitted signal
It reproduces the digital format information
— the channel encoder is designed with knowledge of the channel
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Channels

The problem with communications is that all physical channels
distort the signals traversing them

So that the signal received is not the same as the signal transmitted
Were it not for this distortion communications would be trivial
and there would be no limit on the possible (bit-)rate

From physics we know that all channels:
= add noise (at least some dependent on temperature)
= limit bandwidth (may be low-pass or bandpass)

A
P U N

bandwidth limited

with noise
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Information

What is information anyway?

Information is the amount of surprise
there is no information in yesterday’s newspaper
since we know everything and it doesn’t surprise us any more

Similarly, a constant sinusoidal signal carries no information
since it is deterministic — there is no surprise

This deterministic On/Off signal taking only 1 of two values
carries no information

LA

But this one does carry information (it is stochastic - it surprises us!)

L
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Shannon’s bits

Shannon taught us that information can be quantified

You can compare the amount of information in a book
to that in a piece of music or in a picture
just like you can compare the weight of lead and feathers

The unit often used is the bit
Beware, Shannon’s bit is more general than Tukey's binary digit
Tukey’s bit is only useful for encoding numbers

while Shannon’s bit can be used for any form of information
Consider the set of all items of interest

(e.g., all news items, all types of animals, all letters in an alphabet)
How much information is involved in selecting one item from this set?

Shannon’s bit is defined as follows:
= ask questions with yes/no (binary) answers until you find out
= the minimum number of questions required

IS the information content in bits
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A simple example

Children play a game called 21 questions
One player (the puzzler) thinks of something — say an elephant
The other player (the questioner) asks yes/no questions

If he finds out in 21 questions or less the questioner wins
(and proves that the puzzler’'s brain contains < 21 bits of information)
otherwise the puzzler wins

Is it an animal? YES

Is it bigger than a bread-box? YES

Does it live in the water? NO

Does it live in Africa? YES

Is it a lion? NO

Is it an elephant? YES

The guestioner wins, but this is not the optimal set of questions

The optimal strategy asks questions
that divide the remaining possibilities in half!
(assuming equally probable items) VoS bsP Shgeann

o oThwWN R



When both bits are the same

When are Tukey’s bits the same as Shannon’s?

Assume that the set of all possibilities consists of the numbers
between O and 15

The puzzler thinks of the number 10

The questioner asks the optimal set of questions as follows:

1. Isgreaterthan 7 ? YES=1
2. Is greater than 117 NO= 0
3. lIsitgreaterthan9 ? YES= 1
4. Is it greater than 10? NO= 0

So the Shannon information quantity is 4 bits
and the answers form the Tukey binary number for 10 — 1010

What should the questioner do if the items are not equally probable?
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Source Encoding Theorem

What does this have to do with communications?

Shannon tells us that we need to first encode the information
according to Shannon’s 2" [aw

Example: if the current letter in English text is Q
how much information is there in the fact
that the following letter is U?
Exactly zero! So we shouldn’t waste bits on it!

Example: assume a language with 4 letters A, B, C, and D

If they are all equally probable
then we can encode 00, 01, 10, 11 - 2 bits per letter!

Butif p(A)=1/2 p(B)=1/4 p(C)=p(D)=1/8
how should we encode the letters?

A=1 B=01 C=001 D=000
Average bits per letter = 1/2*1 + 1/4*2 + 1/8*3 + 1/8*3 = 1.75 bits
This is smaller — and the minimal amount!
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Shannon information

We can generalize the last example
If we have N possible symbols, each of which has probability p;
then the information per symbols is given by

1

< log (p_l) > = — Z%\Izl pi logp;

If we use the base-2 logarithm (physicists use In and call this entropy)
we get the information in bits per symbol

If there are 2™ equally probable symbols (each with p=2")
the information of selecting 1 symbol is (obviously) m bits

The information content of a string of K independent symbols
Is K times the information of a single symbol

What is the entropy in bit/symbol of our previous example?
p(A) =1/2 p(B) =1/4 p(C)=p(D)=1/8
1/2 * log,(2) + 1/4 log,(4) + 1/8 log,(8) + 1/8 log,(8) = 1.75 bits/symbol
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Shannon encoding

Shannon’s 2" |aw is not constructive —
it tells us how many bits are required to capture information
but doesn’t teach us how to actually encode information

So generations of mathematicians and engineers have developed
coding methods that approach Shannon’s information limit

= Ziv and Lempel developed a digital file compression method
that approaches Shannon’s limit asymptotically (for large files)

= the speech compression methods we already learned
are lossy methods of Shannon encoding for speech signals

= the Joint Photographic Experts Group have developed
a lossy mechanism to encode images

= the Motion Pictures Expert Group have developed
many lossy mechanisms for encoding video

If Ziv-Lempel compression can compress a file to 1/5 its size
why can’t we recompress that file to 1/25 the original?
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Error detection/correction

Information theory teaches us how to optimally encode information
and it also teaches us how to protect information from errors

You all know about parity bits

For example, we can add 1 bit to each byte making the number of 1s even
this adds 12.5% overhead

and detects any single bit error

but can’t correct any errors

OO0O0O0O0O00O0O
RPRRPRRPRRPORE
RPRPRRPROROO
OO0 IFROOR
RPROOOOHRH
RORROOOO
ROOOROHO
OorRFRORrOOoORr

HOOOOKRHO

Building on this we can make a simple error correction technique
that adds 16 bits to 64, i.e., 25% overhead
but can detect any two errors
and correct any single error

[olelelelelela=]
parfurturturtarySturpur
HHEHEROROO
ooOoORROoOR
RHOOOOR
HORHROOOO
HOOOHOHO
ORHOHOOR

HOOOOKRKHO

What happens if there two errors in the same row or column? 01110110
What happens if the error is in the parity check bits?

There are much more sophisticated error correction schemes!
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To FEC or not to FEC

| source ECC | | modulator channel demodulator ECC || source |
encoder encoder emodutlator decoder decoder

Shannon’s separation theorem implies
that it is suboptimal to use data-layer Error Correction schemes

This is because an ECC always adds extra non-information bits
reducing the information bit rate

Yet, many communications systems use error detection/correction
= CRC (Cyclic Redundancy Code) in Ethernet

= turbo codes in cellular communications

= Reed Solomon FEC in ADSL and optical networks

This is because unlike the assumptions of the capacity theorem
the SNR is often not stationary due to noise events and fading
resulting in errors in the recovered information

Signal layer ECC methods (e.g., TCM)
don’t contradict the separation theorem
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Channel capacity theorem

Shannon’s third theorem states that there is an upper limit
on the data rate in which bits can be transferred in a channel

This is the main reason a 100 Mbps Internet connection
costs more than a 20 Mbps one!

If there were no such limit then
why not give the customer as much as the routers can forward?

This capacity depends on

= the Signal to Noise ratio
the amplitude of the modulated signal
divided by the amplitude of the noise added by the channel

= the bandwidth of the analog channel (in Hz)
which is why communications people frequently say
bandwidth instead of data-rate!

Since this is a theorem in signal processing we are going to prove it
Well, actually our proof has a lot of holes
one day you should read Shannon’s real proof — just for the beauty of it!

Y(J)S DSP Slide 118



Channel Capacity (1)

Let’s first prove that a channel with no noise has infinite capacity
even If its bandwidth is close to zero

XMTR RCVR

Let’s take some large amount of information
m source encode it into bits 1011101001011110001010100010...

= add “0.” at the beginning 0.1011101001011110001010100010...
to obtain a number between 0 and 1 v

= place precisely that voltage as DC on the wire
connecting transmitter to receiver 0 > t

= since there is no noise precisely this voltage will be received
even though the bandwidth is small (DC requires no bandwidth!)
= there is no physical limit on how fast this voltage can be measured

So we can transfer a large amount of data in negligible time
which means the capacity is infinite
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Channel Capacity (2)

Now let’s prove that a channel with infinite bandwidth
has infinite capacity even if it has noise of peak-to-peak value N

N/2

TRl
‘“:Hh:\‘h
RN

N Il

I .‘I |\ |:' \l |‘|||\‘ | ,|||“‘ i ‘II" |I I| I"I'IIIU'I |I I| ||"||| l, I" \ \| VII || I||
| ‘,,-‘ V | |
. |

[ |
1 Wy Wy
v

Let’s take some large amount of information
m source encode it into bits 1011101001011110001010100010...

2N = for every O bit transmit O voltage for T seconds
for every 1 bit transmit 1.5N voltage for T seconds

N = for every O bit the receiver will see a voltage between —N/2 and N/2
N/2 for every 1 bit it will see a voltage between N and 2N

= since there is no overlap the receiver can identify 0/1 with no error
= Since the bandwidth is infinite, we can send T—0

da 0Nl nﬁu f
WA An L )

DC-less noise with uniform distribution

-N/2

-N/2

So we can transfer a large amount of data in negligible time
which means the capacity is infinite
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Shannon’s capacity theorem

If there is both noise and limited bandwidth:
assume (wolg) that we transmit some signal with values between O and S

assume that the channel adds DC-less noise with uniform distribution

we’ll call the peak-to-peak noise N s
so that the noise values are between —N/2 and +N/2

the receiver always sees values between —N/2 and S+N/2
so the receiver’'s dynamic range is S+N

to maximize the information per symbol w/o overlap
we space the signal levels by N

so there can be (S+N)/N = S/N + 1 = SNR+1 different symbols
hence each symbol contains log,(SNR + 1) bits
but there can be BW symbols per second

(S+N)/N
levels

Hence, the maximum information rate C = BW log,(SNR + 1) bit/s

The maximum spectral efficiency is C/BW =

log,(SNR + 1) bit/s/Hz
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Capacity for frequency-

dependent SNR

The capacity theorem assumed that the SNR was

= constant from DC to BW SAR

m zero over BW

or more generally o BW
= constant in some passband
= zero outside the passband

Which will not be the case if either

2 a3 26 AV Caties

= the signal attenuation (including multlpath cancellatlon)

= the noise (including interference)

or both, vary with frequency

The extension of the theorem is simple |

50
ooooooo

= divide the passband into channels of bandwidth Af centered at f
= the capacity theorem states that for the channel

C; = l0g,(SNR(f) + 1) Af

= the composite capacity is ) ; l0g,(SNR(f) + 1) Af
The theorem becomes exact when we send Af - 0

and then C =] log,(SNR(f) + 1) df

o

A

My

>
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Water pouring theorem

The converse to Shannon’s channel capacity theorem
Is Gallager’'s water pouring theorem

The spectrum of the optimum (capacity-achieving) modulated signal
IS given by the water pouring algorithm
= fill a pitcher with a volume of water
representing the total power to be transmitted
= pour the water ov%rsghe reciprocal SNR(f) graph (Noise to Signhal Ratio)

3

very low SNR - no transmitted power | pw SNR —low transmitted power

hi SNR - high transmitted
power

»
»

This power spectrum can be achieved by
= spectral shaping
= explicit power loading
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Modem design

Shannon’s theorems are existence proofs
not constructive methods to design modulation techniques
that maximize capacity given channel characteristics

So we need to be creative to reach channel capacity

Over the years many kinds of modems have been designed :
NRZ

RZ

PAM

FSK

PSK

QAM

OFDM
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NRZ

Our first attempt is to simply transmit 1 or O (volts?)

1 1 1 0 0 1 0 1

This is called Non Return to Zero (i.e., NOT RZ)
Information rate = number of bits transmitted per second (bps)

But this is only good for short serial cables (e.g. RS232), because

requires DC (doesn’t work over radio or fiber) j\

if DC blocked lose runs of 1s N

needs high bandwidth (sharp corners require high frequencies)
strong InterSymbol Interference

timing recovery may not be possible (if long runs of O or 1)
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NRZ needs infinite bandwidth

M

very low BW

UL

and this is for 0101010101!
for random bits finite BW causes an additional problem!

infinite BW
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NRZ InterSymbol Interference (ISI)

low-pass filtered signal
keeps up with bit changes

A < _ _ ~ ~A
TR el
| | | II |I
A I{ |I ‘I "ﬁhjq i P"-., |I '
h |I | f I|II II II II n'l.J |
' | I
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_|'LJ lLJ L |' I _|'A |'J L IUI| \ 1\ \ #II I"U"II' ! I'= JI
Torvnn oo rA N AN o0 oo o
I | i | f [ | I|I N \
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| f N |'I -
_|||_|£ IIU|I I|ulI L I'.N-'I I'.wul UL II'-./ | || L IR ,II'U' [ L _I'.I_,I'_.

insufficient BW to keep
up with bit changes
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DC-less NRZ

So what about transmitting -1/+17?

1 1 1 0 0 1 0

-
\
1
This is better, but not perfect!
DC isn’t exactly zero \
if DC blocked worse than before
still is modulation of DC and not for fiber or radio M
still has high bandwidth (sharp corners)
even without decay, long runs ruin timing recovery
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RZ

What about Return to Zero ?

-

1 1 1 0 0 1 0

= never long + runs, so DC decay less important

= BUT half-width pulses
means twice the number of changes per second
which requires twice the bandwidth!

Shannon strikes !
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OOK

Even better - use OOK (On Off Keying)

1 1 1 0 0 1 0 1

= no signal discontinuity (but derivative discontinuities)
= absolutely no DC!

= based on desired sinusoid (“carrier”) frequency
so suitable for radio and fiber

= can hear it (Morse code)
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NRZ - Bandwidth

The PSD (Power Spectral Density) of NRZ is a sinc (sinc(x) = sin(x)/x)

1

09r
08¢
0.7t
06
05¢
04t
03r
02¢
0.1

0

0 0.5 1 1.5 2 25 3 3.5 4

= the first zero is at the bit rate (from the uncertainty principle!)
= S0 channel bandwidth limits bit rate
s DC depends on level placement (may be zero or spike)
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OOK - Bandwidth

PSD of -1/+1 NRZ is the same, except there is no DC component
If we use OOK the sinc is mixed up to the carrier frequency

= (The spike helps in carrier recovery)
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From NRZ to n-PAM

+1

NRZ 1 =

¥ — GRAY CODE
+1 10 => +3

11=>+1
4-PAM

01=>-1
(2B1Q) 00 => -3

w

11 10 01 01 00 11 01

GRAY CODE
100 => +7
101 =>+5
L [ ] 111 => +3
110 =>+1
111 001 010 011 010 000 110 010=>-1
011 =>-3
001 =>-5
000 => -7

8-PAM

Each level is called a symbol or baud
Bit rate = number of bits per symbol * baud rate
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PAM - Bandwidth

BW (actually the entire PSD) doesn’t change
with the number of levels !

0.9r
08¢
0.7t

os| BAUD
o RATE

04t

03r
02¢
0.1

So we should use many bits per symbol
But then noise becomes more important
(Shannon strikes again!)
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ASK

What about Amplitude Shift Keying - ASK ?

WUWMWMM

11 10 o1 o1 (e]0) 11 o1

= generalizes OOK in the same way that PAM generalized NRZ

= not widely used since hard to differentiate between levels
when there is noise

How do we find the amplitude of a sine?
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FSK

What can we do about noise?
If we use frequency diversity we can gain 3 dB
Use two independent OOKs with the same information

AR AR VAN AN (VT e
AR TATRTRVAVRVAVIIAIATAVAVATATR!

1 1 0 0 1 0

This is FSK - Frequency Shift Keying

We maintain continuous phase for minimum bandwidth

Note that sinusoids are orthogonal — but only over long times !
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FSK In the frequency domain

FSK is based on orthogonality of sinusoids of different frequencies
make decision only if there is energy at f; but not at f,

The uncertainty theorem says that the uncertainty in frequency
IS Inversely proportional to the time duarion

So when we leave a frequency for a short amount of time
its spectrum is not a line — but a sinc!

f f

1

So FSK is robust but slow (Shannon strikes again!)

2
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PSK

What about sinusoids of the same frequency but different phases?

Correlations reliable after a single cycle (Jsin(wt) cos(wt) dt = 0 on 1 cycle!)
So let’s try BPSK

WWVWW bl smbol

or QPSK

2 bits / symbol
Bell 212 2W 1200 bps

V.22
11 10 01 01 00 11 01
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QAM

Finally, we can combine PSK and ASK (but not FSK)
by changing both the amplitude and the phase

2 bits per symbol

11 10 01 01 00 11 01

This is called Quadrature Amplitude Modulation

This is getting confusing
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The secret math behind it all

Remember the Hilbert Transform?

X(t) =A(t)cos (2T f t+ ¢(t))

y(t) = A(t) sin (27f t+o(t))
A(t) is the instantaneous amplitude, ¢(t) is the instantaneous phase
This can be used to demodulate analog/digital communications signals

For digital modulations we draw constellation diagrams
= Xandy as axes
= Ais the radius, ¢ the angle

For example, QPSK can be drawn (rotations are time shifts)

* *

* *

X X

Each point represents 2 bits! *
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QAM constellations

16 QAM /.29 (4W 9600 bps)
* k| ok X
V.22bis 2400 bps * * * * Codex 9600 (V.29) *
2W
* k| Kk Kk
* * * * first non-Bell modem (Carterphone decision)
Adaptive equalizer
Reduced PAR constellation
) ¢ Today - 9600 fax!
8PSK * *
V.27 ) ¢ ) ¢
AW
4800bps * * *
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Voicegrade modem constellations

BFSK QPFSK
BPSK W.29 7200 bps ADSL 3 bit

16QAM .29 9600 bps
V.32 9600 bps V.32 12000 bps V.32 14400 bps

V.34 33600 bps
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Spectral efficiency of modulations

We defined spectral efficiency as the bit/s per Hz
We can now compare the modulation techniques we have seen so far

modulation | bit/symbol | BW/symbol rate | spectral efficiency
NRZ 1 1 1

BPSK 1 2 0.5

QPSK 2 2 1

8PSK 3 2 1.5
16QAM 4 2 2

64QAM 6 2

256QAM 8 2 4

Note that we are using raw (DSB) efficiencies
values for PSK and QAM can be improved by a factor of 2 !
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FDM

QAM (including PSK as a special case) is a very efficient modulation
approaching the Shannon capacity for simple bandpass channels

But the spectrum of a QAM signal is inflexible
like all discretely keyed modulations of a single carrier
it is a sinc centered at f. with first zeros at f, £ symbol-rate

The spectrum can be shaped using a Tomlinson precoder
but this requires a feedback channel and precomputing the filter

So, QAM does not lend itself to water-pouring
The trick is to use Frequency Domain Multiplexing
We saw FDM as a technique to mux different information sources

Here we divide a single information stream into blocks of bits
and mux them together using distinct sub-carriers

Each sub-carrier signal can
= have its own power level
= use its own modulation technique (PSK, QPSK, 16QAM, 64QAM, ...)
thus directly implementing water pouring
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FDM combats ISI but creates ICI

FDM uses many subchannels, each with low bandwidth but low data rate

\\ Subchannels

s Camier Freqs. A
LI TTRe \
! l ! v
SEREREERERER EIT
! | RN
, | . L1t i1,

Since the data rate is low, there is essentially no ISl

And since each subchannel is localized in frequency
we can perform equalization in the frequency domain (FEQ)
l.e., simply multiply each frequency and shift its phase

But, we need to space the sub-carriers far enough apart
to avoid InterChannel Interference

This squanders bandwidth, distancing us from the Shannon capacity
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OFDM

The solution is called Orthogonal FDM (OFDM)

all sub-channels use the same symbol rate (even if different
modulations)

sub-carriers are spaced at precisely the symbol rate

the sub-carriers are the precisely orthogonal
and hence do not interfere with each other
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ICI is eliminated with no guard frequencies needed
simple implementation based on the FFT
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Why are the channels orthogonal?

Let’s look at the baseband signal
where all sub-carriers are multiples of the symbol rate
so that there are an integral number of sinusoid cycles in a symbol
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Any two such signals are precisely orthogonal

fco

and the same is true if we arbitrarily phase shift or amplify the signals

lnlwt —inpwt dt — O (the only requirement is for a whole number of cycles of sin Aw t!)
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Spectral efficiency

OFDM provides the minimum possible sub-carrier spacing
and hence eliminates the need for guard bands

i _'DQ\_A

Now each sub-channel effectively occupies only symbol-rate of bandwidth
So the spectral efficiencies improve by a factor of 2 !

modulation | bit/symbol BW/symbol spectral efficiency
rate

BPSK 1 1 1

QPSK 2 1 2

8PSK 3 1 3

16QAM 4 1 4

64QAM 6 1 6

256QAM 8 1 8 Y(@)S DSP Slide 148




FFT

In order to transmit each sub-channel
we should modulate a baseband signal
up-mix each to the desired sub-carrier frequency (multiply by e®<t)
and add the sub-channels together

modulator

modulator

[ sin(wt)
T -
E 8 modulator
bit _ les analog
stream gz sin(wa!) D/A signal
T o
Lo
(b}
n

sin(wst)

The upmixing can be performed in parallel for all sub-carriers
by the inverse Fourier transform (Zimmerman and Kirsch 1967)
and the FFT does it quickly (Weinstein and Ebert 1969)
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bit
stream

|— framer (—
bit allocation

L1 modulator

L1 modulator

| modulator

L1 modulator

L1 modulator

L1 modulator

L1 modulator

L1 modulator

OFDM modem paradigm

IFFT

transmitter

channel
— D/A A/D
o &
Se°
S
N
)
@
.6*\\9

FET

demodulator

demodulator

demodulator

demodulator

demodulator

demodulator

demodulator

o, — deframer J

demodulator

Stream

parallel to serial bit converter

receliver
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Cyclic prefix

What we previously derived almost works

For analog digital signal processing v () = H(w) X(m)
linear cyclic convolution in the time d)omaln y =h*Xx

IS equivalent to multiplication in the frequency domaln Y, = He X,

So, the linear convolution in the analog channel
has to be converted into cyclic convolution for the digital channel

This is done by adding a Cyclic Prefix to the signal

CP length

—

L cp L——— OFDM symbol = output of IFFT ——
which basically acts as a guard interval to eliminate ISl

The CO duration tends to be from 1/32 up to 1/4 of the symbol duration
and has to be long enough to include the maximum ISI spread

For example, if ISI is due to multipath
then the CP must be long enough to incorporate the longest delayed path
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CP at work

OFDM splits the signal in the time domain into frames

In order for the signal processing of each frame to be independent
the CP ensures that delay spread is within the received frame

As a simple example, assume a frame of 8 samples
a 2-sample multipath y, = x, + hy x,,.; + h, X,,., and CP of 2 samples

The OFDM frame before CP insertion IS X X1 X5 X3 X4 Xg Xg X7
After CP insertion the xmted OFDM frame Is  Xg X7 Xg X1 Xo X3 X4 X5 Xg X7
The received OFDM signal is Yg Y+ Yo Y1 Y2 Y3 Y4 Ys Ve Y7
where yg and y, contain ISI from the previous frame and are discarded
and ( Yo ( I 0 0
0

0 0 0 hy hi\ [ )
m h-] 1 0 (0 0 0 hz I
Y2 he hy 1 0 0 0 0 0 9
13 0 he hy 1 0O 0 0 0 Ty
14 0 0 hy hy 1 0 0 0 Ty
Us 0 0 0 he h 1 0 0 s
e 0O 0 0 0 hy hy 1 0 Tg

\w/ \NO 0 0 0 0 hy iy 1 )\ 27 )

All the information is present for equalization to recover the original X, - X
and the matrix is circulant — which is solved in the frequency domain!
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4G OFDM signal structure

OFDM

symbol GUARD BAND

sub-carrier—»

GUARD BAND

For 4G:
 channel bandwidth ..., 5, 10, 15, or 20 MHz
 guard band overhead is 10%
 sub-carrier spacing = 15 kHz
* OFDM symbol duration = 1/15KHz = 66.67 psec
 short CP = 4.7 psec so total duration = 71.367 psec
 1slot =7 symbols =% msec*
* long CP =16.7 psec so total duration = 83.367 psec
 1slot = 6 symbols = %2 msec*

* CP durations are adjusted so that the slot is precisely %2 msec

v
—

BW uséavt\)lle subchanne EET
(MHz) (MHZ) Is
5 45 300 512
10 9 600 1024
15 13.5 900 1536
20 18 1200 2048
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OFDM modem

bit
streamr= framer

interleaving
and FEC

bit

| allocation

= modulators

filter

antialisasing

= downconversion

Y ~~—VY

IFFT

insertion

CP

D/A

CP

removal

— FFT 1

FEQ

power
amplifier

demodulators =

serializer

bit

UPCONVErSION =

FEC

Warning: this is somewhat over-simplified!

deframer p— Pit
stream
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OFDMA

4G and 5G cellular are based on OFDM
but need Multiple Access and Duplexing mechanisms too

For MA an orthogonal version of FDMA is used
= signals from/to different users occupy different frequencies
= the SubCarrier Spacing must be exactly the OFDM symbol rate

For duplexing there are two alternatives:

= Frequency Domain Duplexing
different frequency bands are used for the UL and DL
for example nl: UL 1920-1980 MHz, DL 2110-2170 MHz

= Time Domain Duplexing
a single frequency band is used
for example n38: 2570-2620 MHz for both UL and DL
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OFDMA

The basic OFDM paradigm can be readily extended to OFDMA
by allocating time-frequency Resource Elements to different users

f

GUARD BAND

Resource
Element

scs$ Q

symbol

GUARD BAND

v
—

In the DL direction the base-station transmits to all users
and each needs to know which REs it needs to extract
In the UL direction each UE transmits only in its REs
In order not to interfere with other UEs in the cell
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Financial signal processing
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Application : Stock Market

DAX from -20110207 to-20120620
000 I I I

20111212 20120207 20120403

This signal is hard to predict (extrapolate)
self-similar and fractal dimension
polynomial smoothing leads to overfitting
noncausal MA smoothing (e.g., Savitsky Golay) doesn’t extrapolate
causal MA smoothing leads to significant delay
AR modeling works well
— but sometimes need to bet the trend will continue
— and sometimes need to bet against the trend
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