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Signal similarity

We often need to know how similar two signals x and y are

for example, to detect the appearance of a single in noise

In radar we transmit a known signal

the signal propagates in space until it is reflected by a target

it then travels back and is received by the radar receiver

By accurately detecting the exact time that the signal is received

and subtracting the exact time it was transmitted

we can deduce the distance to the target

However, due to 

◼ the 1/r2 propagation loss 

◼ the minute amount of energy reflected

the signal received is very weak

while the noise may be large

We need a very sensitive way to detect the known signal in noise
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Signal similarity

To compare two signals

we can compute the difference signal δ = x – y

and define similarity as its energy Eδ being small 

But that doesn’t work if (with respect to x)

◼ y has some gain

◼ y is shifted in time 

For example, if y = g x then the difference is δ = (1-g) x

which is only small if g≈1

We can derive something better from the energy Eδ

Eδ = σ𝒏(𝒙𝒏 - 𝒚𝒏)2  

=  σ𝒏𝒙𝒏
2 – 2 σ𝒏𝒙𝒏 𝒚𝒏 + σ𝒏𝒚𝒏

2

= Ex – 2 Cxy + Ey

Cxy is called the (cross)correlation between x and y
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Correlation

Eδ =  Ex – 2 Cxy + Ey

where Ex and Ey are the (constant) energies of the 2 signals

Note that when Eδ is minimal, Cxy is maximal

so we say the signals are correlated when Cxy is large

Cxy is still large even if y has arbitrary gain with respect to x

since the gain is captured in the energy component

For example, if y = g x (and thus Ey = g2 Ex)

then Cxy = σ𝒏𝒙𝒏 𝒚𝒏 = g σ𝒏𝒙𝒏 𝒙𝒏 = g Ex

What do we mean by large?

If y = g x then Cxy = ExEy
so a simple way to gauge the size of cross-correlation

is to compare it with ExEy (it won’t be equal because of noise!)

However, Cxy will not indicate similarity if y is shifted in time
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Correlation

If Cxy is positive and large 

then x and y are correlated (similar)

If Cxy is negative and large 

then x and y are anticorrelated

If Cxy is zero (or very small) 

then x and y are uncorrelated (different)
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Correlation with lags

To take care of time shifts with define  (m is called the correlation lag)

Cxy(m) = σ𝒏𝒙𝒏 𝒚𝒏−𝒎

(m is called the correlation lag) 

We now look for its maximum value (its peak) 

This peak corresponds to the optimal time shift

if there the correlation is significant (using the same criterion as before)

then we have found our similar signal

Note the difference between correlation and convolution

◼ in correlation both indexes increase

◼ in convolution one increases one decreases
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Highly correlated signals
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Financial indicators

DAX, Dow Jones, Nasdaq and gold prices from 2011-2016

Which signals are correlated? Anticorrelated?

Can you use this for prediction?
Y(J)S   DSP     Slide 9



Autocorrelation 

We can define the autocorrelation Cxx(m) = σ𝒏𝒙𝒏 𝒙𝒏−𝒎
which tells us how similar the signal is to itself 

Of course a signal is always similar to itself!

But we use autocorrelation to see how similar a signal is 

to a time shifted version of itself

A periodic signal has peaks at lags that are multiples of its period!

Since |cxx(m)| ≤ Ex it is useful to define the normalized autocorrelation

cxx(m) = Cxx(m) / Ex

where |cxx| ≤ 1

Why can autocorrelation be more accurate than using the FFT?
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Wiener filter

Pulse radars transmit a short (and thus low energy) distinctive pulse

and receive a delayed, weak, noisy copy after time  t =  2 * c * R

The Wiener filter finds t by building an MA filter 

with coefficients equal to the time reversed signal

The MA’s convolution actually performs a correlation 
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Prediction

Wiener’s famous paper was named

Interpolation, extrapolation and smoothing of stationary time series

Where in modern terminology:

◼ smoothing = low-pass filtering

◼ interpolation = resampling (sampling at different time instants)

◼ extrapolation = prediction

We previously saw how Yule predicted sun-spots via an AR process

𝑠*𝑛 = σ𝑚
𝑀 𝑏𝑚 𝑠𝑛−𝑚 where s*𝑛 is the estimate of s𝑛

Let’s directly derive the coefficient b for the simplest case (M=1)

We want to minimize the energy of the error signal e = y*-y

σe2 = σ(s𝑛 − s𝑛
∗ )2 = σ(s𝑛 − 𝑏1 𝑠𝑛−1) 2 = (1+𝑏1

2)Es – 2𝑏1Cs(1)

Differentiating and setting equal to zero we find 𝑏1 = Cs(1) / Es = cs(1)

So, there is a connection between prediction and autocorrelation!

More generally, the coefficients are given by Yule Walker equations!
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Adaptive filters

We often would like to remove noise from a noisy signal

Sometimes we can access a signal that is highly correlated to the noise

For example, assume 2 microphones

1. air conditioner noise   qn
2. speech xn + filtered air conditioner noise q’  

In the simplest case 

the filtering is a single-tap MA filter which adds a qn-m
so yn = xn + a qn-m where a and m are unknown

The idea is to find a and m by adapting our estimates of them

so this is called an adaptive filter

If a and q change over time

or even when we simply alter our estimates of them 

then this is not a filter since it is not time invariant
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Adaptation

We can assume that 

◼ the desired signal x   and 

◼ the noise

are uncorrelated

By finding the maximum cross-correlation

between q and y=x+q’ (which only looks for q!)

we can determine m and thus qn-m

But how do we find a ?

Estimate   x*n = yn - c qn-m =   xn + (a-c) qn-m 
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The energy parabola

x*n =  xn + (a-c) qn-m 

So  Ex* = < x*2 > = < x2 > + (a-c)2 < q2 > + 2 (a-c) <x q>

Since x and q are uncorrelated the last term is zero

The energy is parabolic in c with a single minimum
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Adaptation

Starting from x*n =  xn + (a-c) qn-m 

The global minimum is for c=a and there x*n =  xn

To find c we need to minimize the energy of x*n as a function of c

This minimization is typically done via gradient descent (AKA steepest descent)

What if we receive the noise and echoes of it? yn = xn + Σm am qn-m 

The same thing can be done for a M-tap filter

using M-dimensional gradient descent 
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E

c

Gradient descent
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In gradient descent we choose a step size λ

at each step we estimate the gradient (derivative of E) d 

and correct c at each step by c ← c - λ d 

The gradient points in the direction that E increases

so we move in the opposite direction (minus sign)

The larger the gradient the further we move

for more complex problems 

the energy is not parabolic 

and may contain local minima



Echo cancellation

Another common use of adaptive filters is echo cancellation

◼ Acoustic Echo Cancellation

e.g., for car hands-free units

◼ Line Echo Cancellation
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Echo suppressors

Telephony hybrids are not perfect 

leaking some amount of echo is sent back to the speaker

If the echo delay is < 20 ms then this is not noticed

but round-trip delay for US coast-to-coast is > 50 ms

and for satellite conversations the delay is > ½ second

Before the advent of DSPs echo was removed by echo suppressors

that chose the louder direction and blocked the opposite direction

effectively making telephone conversations half-duplex

(this still sometimes happens with simple office phones)

For non-speech (fax, modems) echo suppressors are turned off

by sending a 2100 Hz tone

Echo suppression is a waste of full-duplex infrastructure

◼ conversation is unnatural 

◼ hard to break in

◼ speaker hears dead line (so telephones artificially add sidetone)

LEC was one of the first applications of DSPs
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Echo cancellers

In a simplistic model of LEC the near end simply estimates the echo 

and subtracts it to send clean (echo-less) speech to the far end

(of course the far end does the same)

Real LECs have additional elements, including

◼ double-talk detectors (Geigel algorithm)

to freeze adaptation when both sides are speaking

◼ nonlinear processing (center clipping) to remove residual echo
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Realistic LEC
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LEC in action

The LEC mechanism

◼ places samples received from the far-end into the X buffer

◼ convolves them with the current filter (called the H register)

obtaining the echo estimate 

◼ subtracts the echo estimate from the near-end samples

How is the filter adaptation done?

Assume that only the far-end subscriber is talking 

then the signal at the input to the subtracter is unwanted echo 

generated by the near-end hybrid and telephone 

The adaptation mechanism varies the filter coefficients 

minimizing the energy at the output of the subtracter

If the far-end is quiet or double-talk is detected

the adaptation algorithm automatically stops updating 
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Equalization

A problem that arises in data communications

We can model the channel distortion as 

◼ filtering Y(ω) = H(ω) X(ω) i.e.,   yn = σ hl xn−l

◼ adding noise   yn = σ hl xn−l + 𝑣n

Recovering the original signal 

requires applying the inverse of the channel filter (equalization)

X(ω) = G(ω) Y(ω) i.e.,   xn = σ gl yn−l

For this we need to 

◼ find the channel filter coefficients  hl
◼ invert the filter   gl

Equalizers are also used in stereo audio systems. Why ?
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Multipath

What happens when a signal is received over a primary (shortest) path

and also over delayed paths (e.g. reflections off buildings) ?

The composite signal contains echoes

and is thus an MA filtered version of the original

primary path

+

min 
delay

max delay
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Finding the equalizer

If we start the transmission with a known signal

then finding the channel filter is a system identification problem

In particular, if we assume that the channel filter 

◼ is MA then we need to solve Wiener-Hopf equations

and the inverse filter will be AR  why?

◼ is AR then we need to solve Yule-Walker equations

and the inverse filter will be MA  why?

Sometimes we can’t transmit a special known sequence - why? 

for example, receiver may turn on at any time

then we need blind equalization

And even if we can, what if the channel changes over time? why?

for example, a mobile receiver

Then we need to adapt the equalizer over time

if we can derive a measure of received SNR

we can use gradient descent 
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Using the equalizer

There are two ways to apply equalization G to compensate for H

◼ at the receiver x = G y = G H x = H-1 H x

◼ at the transmitter (Tomlinson precoding) :  transmit x’ = G x 

and receiver automatically sees y =  H G x = H H-1 x

If the channel filter is not AR then the second way is better – why?

Because at frequencies where the filter has zeros 

the channel frequency response is not invertible

That is, if at ω0 we have H(ω0)=0  

then no G(ω0) can obey G(ω0) H(ω0) = 1

and so information there is lost

Even if H(ω0) is not exactly zero, but very small H(ω0) ≈ 0

G(ω0) will have to be very large

and will lead to noise amplification

(we have been neglecting the additive noise until now ...)

However, Tomlinson requires a back-channel!
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Application: Speech

Speech is a wave traveling through space

at any given point in space it is a signal in time

The speech values are pressure differences (or molecule velocities)

There are many reasons to process speech, for example

◼ speech storage / communications

◼ speech compression (coding)

◼ speed changing, lip sync

◼ text to speech (speech synthesis)

◼ speech to text (speech recognition)

◼ translating telephone

◼ speech control (commands)

◼ speaker recognition (forensic, access control, spotting, …)

◼ language recognition, speech polygraph,  …

◼ voice fonts
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Speech in the time domain

D   IGI  T  A   L      S  I GNA   L     PROCESSING

Why don’t we see the letters?
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Speech in the frequency domain
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Phonemes

A phoneme is defined to be the smallest acoustic unit 

that can change meaning

Different languages have different phoneme sets

and their speakers hear sounds differently

◼ in Hebrew there is no TH phoneme, so speakers substitute Z

◼ in Arabic there is no P phoneme, so speakers substitute B

◼ in English there is no כ phoneme, so speakers substitute K

◼ in Japanese there is a single phoneme 

somewhere between English R and L

Some languages have many phonemes

◼ Danish has 25 different vowels

◼ Taa has over 150 consonants

◼ Xhosa has 3 different click sounds

Some have very few

◼ Piraha has 3 vowels and 8 consonants

◼ Hawaiian has only 3 consonants
Y(J)S   DSP     Slide 31



Some phoneme types
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Vowels

• front (heed, hid, head, hat)

• mid  (hot, heard, hut, thought)

• back (boot, book, boat)

• dipthongs (buy, boy, down, date)

Semivowels

• liquids (w, l)

• glides (r, y)

Consonants

• nasals (murmurs) (n, m, ng)

• stops  (plosives)

• voiced (b,d,g)

• unvoiced (p, t, k)

• fricatives

• voiced (v, that, z, zh)

• unvoiced (f, think, s, sh) 

• affricatives (j, ch)

• whispers (h, what)
• gutturals ( ח ע, )

• clicks

• etc. etc. etc.



Speech sampling

Telephony speech is from 200 to 4000 Hz

this is not enough for all sounds we can hear

not really even enough for speech (e.g., S - F)

high quality audio is from 20 Hz to over 20 kHz

By the sampling theorem we need 8000 samples per second

high quality audio typically sampled at 44.1 / 44 / 48 kHz

If we sample at 8 bits per sample 

we perceive significant quantization noise (see next slide)

So, let’s assume we should sample at 16 bits per sample

actually 13-14 bits is enough

So we need 8000 samples/sec * 16 bits/sample = 128 kbits/sec

to faithfully capture telephony quality speech

Information theory tells us that speech actually only carries 

a few bits per second

So we should be able to improve this

but we need to learn more about the speech signal!
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What’s quantization noise?

When we quantize a signal value sn to the closest integer (or rational)

we add an error value xn = sn + qn

Assuming the qn samples are uncorrelated

the quantization noise is white noise

We hear white noise as a hiss

qn ε [-½ 2-n, ½ 2-n] 

(or [-½ 2-n, ½ 2-n] if we assume the signal is in [-1 , 1])

So the more bits we use the better the Signal to Noise Ratio

Each additional bit reduces the SNR by a factor of 2 (3 dB)
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Speech biology

To understand the speech signal 

we need to learn some biological signal processing

There are two separate systems of interest

◼ speech generation system
– lungs

– windpipe

– vocal folds (cords)

– vocal tract (mouth cavity, tongue, teeth, lips, uvula)

– Broca’s area (in left hemisphere)

◼ speech recognition system
– outer ear

– ear drum and hammer

– cochlea, organ of Corti (cilia)

– auditory nerve

– medial geniculate nucleus (in thalamus)

– auditory cortex and Wernicke’s area (in superior temporal gyrus)

These two systems are not well matched
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Speech Production Organs

Esophagus

Nasal

cavity

Mouth
cavity

Tongue

Larynx

Trachea

Uvula

Brain

Lungs

Pharynx

Teeth

Lips

Hard 

Palate

Velum

Y(J)S   DSP     Slide 36



Speech Production

Air from lungs is exhaled into trachea (windpipe)

Vocal cords (folds) in larynx can produce periodic pulses of air

by opening and closing (glottis)

Throat (pharynx), mouth, tongue and nasal cavity modify air flow

Teeth and lips can introduce turbulence 

Basic function – filter an excitation signal 

(we will see that the filter can be modeled as an AR filter)
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Hearing Organs
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Hearing Organs

Sound is air pressure changing over time (and propagating through space)

Sound enters the external ears which 

◼ collect as much sound energy as possible (like a satellite dish) 

◼ differentiate between right/left and front/back

◼ even differentiate between up and down

Sound waves impinge on outer ear enter auditory canal

Amplified waves cause eardrum to vibrate

Eardrum separates outer ear from middle ear

The Eustachian tube equalizes air pressure of middle ear

Ossicles (hammer, anvil, stirrup) amplify vibrations

Oval window separates middle ear from inner ear

Stirrup excites oval window which excites liquid in the cochlea

The cochlea is curled up like a snail

The basilar membrane runs along middle of cochlea

The organ of Corti transduces vibrations to electric pulses

Pulses are carried by the auditory nerve to the brain
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Cochlea

◼ Cochlea has 2 1/2 to 3 turns (for miniaturization)

were it straightened out it would be 3 cm in length

◼ The basilar membrane runs down the center of the cochlea

as does the organ of Corti

◼ 15,000 cilia (hairs) contact the vibrating basilar membrane

and when it vibrates they release neurotransmitters

stimulating 30,000 auditory neurons

◼ Cochlea is wide (1/2 cm) near oval window and tapers towards apex

and is stiff near oval window and flexible near apex

◼ hence high frequencies cause vibrations near the oval window

while low frequencies cause section near apex to vibrate

Basic function – Fourier Transform

(by overlapping bank of bandpass filters)
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Voiced vs. Unvoiced Speech

We saw that air from the lungs passes through the vocal cords

When open the air passes through unimpeded

When laryngeal muscles close them glottal flow is in bursts

When glottal flow is periodic we have voiced speech

◼ basic interval/frequency called the pitch (f0)

◼ pitch frequency is between 50 and 400 Hz

You can feel the vocal cord vibration 

by placing your fingers on your larynx

A laryngeal microphone directly perceives the sound at this point

even opening you mouth very wide doesn’t work very well 

Vowels are always voiced (unless whispered)

Consonants come in voiced/unvoiced pairs
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Exercise

Which are voiced and which are unvoiced ?

B, D, F, G, J, K, P, S, T, V, W, Z, 

Ch, Sh, Th (the), Th (theater), Wh, Zh

Which unvoiced phoneme matches the voiced one?

◼ B

◼ D

◼ G

◼ V

◼ J

◼ Th (the)

◼ W

◼ Z

◼ Zh
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Excitation spectra

Voiced speech is periodic and so has line spectrum 

Pulse train is not sinusoidal due to short pulses of air

and is rich in harmonics (amplitude decreases about 12 dB per octave)

Unvoiced speech is not periodic

Common assumption : white noise (turbulent air)

f

f

pitch
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Effect of vocal tract

So what is the difference between all the (un)voiced sounds?

The sound exiting the larynx enters the mouth cavity and is filtered

Mouth and nasal cavities have resonances (poles)

similar to blowing air over a bottle

Thus the sound exiting the mouth is periodic (due to periodic excitation)

but with some harmonics strong and some weak

Resonant frequencies depend on geometry

in particular mouth opening, tongue position, lip position
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Effect of vocal tract - cont.

Sound energy at resonant frequencies is amplified

Frequencies of peak amplification are called formants

F1

F2

F3

F4

fr
eq

u
en

cy
 r

es
p

o
n

se

frequency

voiced speech unvoiced speech

F0
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Cylinder model(s)

Rough model of throat and mouth cavity (without naval pathway)

With nasal pathway

destructive

interference

Voice

Excitation

Voice

Excitation



Formant frequencies

◼ Peterson - Barney data (note the “vowel triangle”)
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f1

f2

AE = hat

AH = hut

AO = ought

EH = head

ER = hurt

IH = hit

IY = heat

UH = hood

UW = who



Sonograms
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Where is the pitch?  

Where are the formants?



Simple model for speech generation

synthesis

filter

White Noise

Generator

Pulse

Generator

U/V

switch
G
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LPC Model

This model was invented by Bishnu Atal (Bell Labs) in 1960s

◼ pulse generator produces a harmonic rich periodic impulse train

◼ white noise generator produces a random signal 

◼ U/V switch chooses between voiced and unvoiced excitation

◼ varying gain allows to speak loudly or softly

(typically placed before the filter)

◼ LPC filter amplifies formant frequencies

(no zeros but peaks - all-pole or AR IIR filter)

Note: standard LPC doesn’t work well for nasals 

destructive interference creates zeros in the frequency response

◼ output resembles true speech to within modeling error
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Can LPC compress speech?

Let’s estimate the number of bits/second required to

capture speech (for transmission or storage) using the LPC model

◼ we need to model several times per phoneme
– no-one can produce more than a few phonemes per second

– 20-100 frames per second is reasonable, let’s assume 25

◼ we need to specify the pitch (between 50 and 400) in Hz 

– 1 byte is more than enough (no-one hears the difference of 1 Hz!)

◼ we need 1 bit for the U/V switch

– but don’t have to waste a bit 

since we can encode as pitch with zero frequency

◼ we need to capture the gain

– 1 byte is enough (our ear is not that sensitive to small gain changes)

◼ the AR filter has 4 formants

– so we need 8 values (4 frequencies and 4 amplitudes or 8 poles)

and once again will assume 1 byte for each

Altogether we need 25 * (10 bytes * 8 bits/byte) = 2000 bits/sec

much better than 128,000 bits/sec
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LPC ?

Why is this model called Linear Predictive Coding ?

The synthesis filter performs

sුn = Sm bm sn-m

which predicts the next signal sample

based on a linear combination of previous samples

Most of the time we can forget about the glottal excitation

but this introduces an error en

So we define

sුn = en + Sm bm sn-m

This defines a classic AR model, solvable using Yule-Walker
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How do we do it?

Given a frame of speech samples (x0, x1, x2, ... xN-1)

how do we find the LPC parameters?

◼ the gain is easy to find – it requires calculating the energy

◼ U/V can be found by observing the spectrum 

if lines then voiced, if continuous then unvoiced

◼ the pitch can be determined by

– lowest spectral peak or frequency difference between peaks

– autocorrelation

◼ since the input to the AR filter can now be created

and the output is the speech samples

we now have an AR filter system identification problem 

so the filter can be found by solving the Yule-Walker equations
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Does it work?

An early commercial use of LPC 

was the Texas Instruments Speak & Spell chip

which used LPC-10 (10 AR coefficients)

An early software implementation was Klattalk

Pure LPC speech sounds robotic (Steven Hawking speech) because

◼ we need to add prosodic modeling

◼ we need to post process to clean up estimation errors

e.g., pitch doubling

◼ we need to add frame-to-frame processing

e.g., pitch needs to change smoothly

but most importantly

◼ pitch pulses are not deltas or on-off rectangles

they have waveforms that influence the sound
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Better speech compression

Compressing telephony quality speech 

was once a tremendously important problem

The International Telecommunications Union set goals

to reduce speech transmission rates by factors of 2

We can thus compare:

◼ 128 kbit/sec – linearly quantized speech 

◼ 64 kbit/sec – Pulse Code Modulation (logarithmic quantization) 

◼ 32 kbit/sec – Adaptive Delta PCM

◼ 16 kbit/sec was never standardized

◼ 8 kbit/sec – Code Excited LPC

But we now need to understand some psychophysics
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Psychophysics

Psychophysics is the subject that combines psychology and physics

Its fundamental question is the connection between

◼ external physical values (light, sound, etc.)

◼ internal psychological perception

Ernst Weber was one of the first to investigate of the senses

In a typical experiment 

a subject is asked in which hand there are more coins

◼ 1 coin in 1 hand and 2 coins in the other is easily noticeable

◼ 10 coins in 1 hand and 11 coins in the other is just noticeable

◼ 41 coins in 1 hand and 42 in the other is not noticeable

But how could this be?

Can one notice the difference of 1 coin or not? 

Y(J)S   DSP     Slide 56



Weber

Weber defined the concept of the Just Noticeable Difference (JND) 

the minimal change produces a noticeable difference 

Weber’s important discovery was that JND varied with signal strength

In fact, Weber found

the sensitivity of a subject to X is in direct proportion to the X itself

that is

one notices adding a specific percentage not an absolute value

D I = k I
Thus

◼ the number of noticeable additional coins 

is proportional to the number of coins

and the same is true for

◼ saltiness of salty water

◼ length of lines

◼ strength of sound
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Fechner’s law

Gustav Theodor Fechner was a student of Weber

While viewing the sun in order to discover JNDs he was blinded

He later regained his sight and took this as a sign 

that he would solve the psychophysical problem

Simplest assumption: JND is single internal unit

Weber’s law says we perceive external values multiplicatively

Fechner concluded that internal unit is the log of the external one:

Y = A  log I  +  B
People celebrate the day he discovered this

as Fechner Day (October 22 1850)
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Dynamic range

Logarithms are compressive

Fechner’s law explains the fantastic ranges of our senses

Sight (retinal excitation)

◼ minimum: single photon 

◼ maximum (harm threshold): direct sunlight

◼ ratio: 1015

Hearing (eardrum movement)

◼ minimum: < 1 Angstrom 10-10 meters

◼ maximum (harm threshold): >1 mm (behind a jet plane)

◼ ratio: 108

Alexander Graham Bel defined to be log10 of power ratio

A decibel (dB) one tenth of a Bel

d(dB) = 10 log10 P1 / P2
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Fechner’s law for sound amplitudes
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According to Fechner’s law, we are more sensitive at lower amplitudes

We perceive small differences when the sound is weak

 but only perceive large differences for strong sounds 

Companding is the compensation 

 for the logarithmic nature of speech perception

We need to adapt the logarithm function

  to handle positive/negative signal values

If we could sample non-evenly

 then this can be exploited for speech compression



Fechner’s law for sound frequencies
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octaves, well tempered scale

Critical bands

Frequency warping

Melody  1 KHz = 1000, JND afterwards    M ~ 1000 log2 ( 1 + fKHz )

Barkhausen can be simultaneously heard   B ~ 25 + 75 ( 1 + 1.4 f2KHz )
0.69

                       excite different basilar membrane regions

f

12    2



2 more psychological laws
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Respond to changes

Our senses respond to changes – not to constant values

Masking

Strong tones block weaker ones at nearby frequencies

f



PCM

8 bit linear sampling (256 levels) is noticeably noisy

But due to

– prevalence of low amplitudes in generated speech

– logarithmic response of ear

we can use 8-bit logarithmic sampling ( with sgn(s) * log(|s|) )

G.711 gives 2 different logarithmic approximations

m-law

A-law

Although very different looking they are nearly identical

G.711 standard further approximates these expressions 

by 16 staircase straight-line segments (8 negative and 8 positive) 

Note that m-law has horizontal segment through the origin (plus and minus zero)

while A-law has a vertical segment Y(J)S   DSP     Slide 63

North America m = 255

Rest Of World

A = 87.56



Logarithmic sampling
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DPCM
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Due to low-pass character of speech excitation

     differences are usually much smaller than signal values

     and hence require fewer bits to quantize

This would not be the case for white noise!

Simplest Delta-PCM (DPCM) : quantize first difference signal Ds

Delta-PCM : it is even better to quantize 

 the difference between the signal and its prediction

sුn = p ( sn-1 , sn-2 , … , sn-N ) =  σi pi sn−i 

Since we predict using linear combination

 this is a simple type of linear prediction

Delta-modulation (DM) :  use only the sign of difference (1bit DPCM) 

Sigma-delta (1bit) sampling :  oversample, DM, trade-off rate for bits



Deltas are usually small
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The first difference requires fewer bits

 if 4 bits is enough then we need 32 kb/s



DPCM with prediction
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If the linear prediction works well, then the prediction error

  en   =  sn  -    sුn

will be lower in energy and whiter than sn  itself !

Only the error is needed for reconstruction, 

since the predictable portion can be predicted sn = sුn + en!

sn

prediction

filter

sn en

-

prediction

filter sුn
sුn



Open loop prediction

The encoder (linear predictor) is present in the decoder

but there runs as feedback

The decoder’s predictions are accurate with the precise error en

but it gets the quantized error ොεn 

and as the error accumulates the signals diverge!
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sn

- Q

PF

ොεn

PF

IQ ොsn



Side information

There are two ways to solve the error accumulation problem ...

The first way is to send the prediction coefficients

from the encoder to the decoder

and not to let the decoder derive them

The coefficients thus sent are called side-information

Using side-information means higher bit-rate

(since both ොεn and the coefficients must be sent)

The second way does not require increasing bit rate
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Closed loop prediction

To ensure that the encoder and decoder stay “in-sync”

we put the entire decoder 

including quantization and inverse quantization

into the encoder

Thus the encoder’s predictions are identical to the decoder’s

and no model difference accumulates
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IQ

PF
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en



Two more forms of error
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For DM there is another source of error (that depends on step size)

D OKD too small D too large D much too large



Adaptive DPCM

Speech signals are very nonstationary

We need to adapt the step size to match signal behavior
– increase D when signal changes rapidly
– decrease D when signal is relatively constant

Simplest method (for DM only):
– if present bit is the same as previous multiply D by K (K=1.5)

– if present bit is different, divide D by K
– constrain D to a predefined range

More general method :
– collect N samples in buffer (N = 128 … 512)
– compute standard deviation in buffer
– set D to a fraction of standard deviation

⚫ send D to decoder as side-information   or
⚫ use backward adaptation (closed-loop D computation)
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G.726

◼ G.726 (standard for international telephony) has

– adaptive predictor

– adaptive quantizer and inverse quantizer

– adaptation speed control

– tone and transition detector

– mechanism to prevent loss from tandeming

◼ computational complexity relatively high (10 MIPS)

◼ 32 kbps toll quality

◼ 24 and 16 Kbps modes defined, but not toll quality

G.727 same rates but embedded for packet networks

ADPCM only exploited general low-pass characteristic of speech

What is the next step?

Y(J)S   DSP     Slide 73



AVQSBC

A good quality 16 kb/s speech encoder is obtained

by exploiting Fechner’s law for sound frequencies

The idea is to use Sub-Band Coding

We divide the signal in the frequency domain

using perfect-reconstruction band-pass filters

The frequency widths are small at low frequencies

but large at high frequencies

Each subband is separate quantized using Vector Quantization

This technique was never standardized for speech

but SBC was standardized for music as MP3 audio
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LPC10

For military-quality voice

180 sample frame (44.4 frames per second)

are encoded into  54 bits   as follows:

◼ Pitch + U/V (found using AMDF) 7 bits

◼ Gain                                             5 bits

◼ 10 reflection coefficients

– first two coefficients converted to log area ratios

– L1, L2, a3, a4 5 bits each

– a5, a6, a7, a8 4 bits each

– a9 3 bits     a10 2 bits          41 bits

◼ 1 sync bit                                      1 bit

54 bits 44.44 times per second results in 2400 bps

By using VQ one could reduce bit rate to under 1 Kbps!

LPC-10 speech is intelligible, but synthetic sounding

and much of the speaker identity is lost !
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CELP

The true sn is obtained by adding back the residual error signal

sn = sුn  + en

So if we send en as side-information we can recover sn

en is smaller than sn so may require fewer bits ! 

but en is whiter than sn so may require many bits!

Can we compress the residual?

Note that the residual error is actually the LPC filter’s excitation 

The idea behind Code Excited Linear Prediction 

is to encode possible excitations in a codebook of waveforms

and to send the index of the best codeword
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Analysis By Synthesis

To find the best code word we try them all (exhaustive enumeration)

although algebraic tricks save computation

We choose the code word with the least error
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sn

CB ... LPC
-

find

minimum

Compute
energy



Perceptual weighting

But we don’t want the approximation 

that looks the most like the real signal

We want the approximation 

that sounds the most like the real signal

Now is the time to use psychophysics

Instead of computing the energy of the difference

we use a perceptual measure of similarity

that takes masking, etc. into account
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G.729

The standard speech compression in cellular

and very popular in Internet and other applications

Encodes 10 ms frames (100 frames per second) into 80 bits

resulting in 8000 bits per second

filter coefficients18 bits pitch              8 bits

gain CB 14 bits adaptive CB 5 bits

pulse positions 26 bits pulse signs   8 bits parity check  1 bit
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Speech recognition

You might think that speech recognition could be performed thus:

◼ extract speech features (e.g., LPC, Cepstrum) for speech frames

◼ classify several successive frames into phonemes

◼ combine phonemes into words

Unfortunately, that doesn’t work for many reasons

◼ phonemes are pronounced differently depending on context

◼ phonemes are pronounced differently depending on accent

◼ phonemes may not be pronounced at all in rapid speech

◼ nonlinear time warping

Y(J)S   DSP     Slide 80



Backtracking

The lower levels of the human auditory tentatively identify 

the most probable phoneme

But as we continue listening

the higher levels continuously backtrack 

and select lower probability ones if needed

To understand this backtracking we can use an analogy

from even higher levels of speech understanding

What does the word FIRE mean in the following sentence?

THE MAN SHOUTED

FIRE !

FIRE THE GUN !

FIRE THE GUN MAKER !
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Why don’t we notice this?

All of this happens unconsciously in the background

but involves higher levels of the cortex

Example 1

People who do not understand a language

can not reliably transcript phonemes in that language

Example 2

People who understand a language well

can successfully understand in very low SNR

Example 3

What am I saying?

HOW TO RECOGNIZE SPEECH

HOW TO WRECK A NICE BEACH
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Levenshtein distance

Automatic typing correction mechanisms and spelling correction

find the closest known word to an unknown one

How do we define closeness?

The Levenshtein distance between 2 strings (not necessarily equal length)

is defined as the minimal cost to transform 1 string to the other

Where each of the following has a defined cost

◼ deletion digital → digtal

◼ insertion signal → signall

◼ substitution processing → prosessing

– in typing the cost may depend on how close the keys are

– in spelling correction the cost may depend on the sounds

What is the unity weighted Levenshtein distance 

between digital and dijtal?

How do we find the minimum cost?
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Levenshtein distance (unity weighting)

What is the Levenshtein distance between prossesing and processing ?

p r o c e s s i n g

p
 
 
r
 
o
 
 
s
 
s
 
e
 
s
 
i
 
n
 
g

Rules:

1 enter square 

   from left (deletion)  cost = 1

2 enter square 

    from under (insertion) cost = 1

3a enter square 

       from diagonal
       and same letter cost = 0

3b enter square

       from diagonal
      and different letter
     (substitution) cost = 1

4 Always use minimal cost
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Levenshtein distance - cont.

Start with 0 in the bottom left corner

9

8

7

6

5

4

3

2

1

0     1      2      3     4      5      6      7      8     9

p r o c e s s i n g

p
 
 
r
 
o
 
s
 
s
 
e
 
s
 
i
 
n
 
g

0
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Levenshtein distance - cont.

Continue filling in table

9

8

7

6

5

4     3      2      2     2

3     2      1      1     2

2     1      0      1     2

1     0      1      2     3

0     1      2      3     4      5      6      7      8     9

p r o c e s s i n g

p
 
 
r
 
o
 
s
 
s
 
e
 
s
 
i
 
n
 
g

Note that 

only local 

computations 

and decisions 

are made

0
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Levenshtein distance - cont.

Finish filling in table

9     8      7      7     6      5      5     5      4      3

8     7      6      6     5      4      4     4      3      4

7     6      5      5     4      3      3     3      5      5

6     5      4      4     3      2      3     4      4      5

5     4      3      3     2      3      3     3      4      5

4     3      2      2     2      2      2     3      4      5

3     2      1      1     2      2      3     4      5      6

2     1      0      1     2      3      4     5      6      7

1     0      1      2     3      4      5     6      7      8

0     1      2      3     4      5      6     7      8      9

p r o c e s s i n g

p
 
 
r
 
o
 
s
 
s
 
e
 
s
 
i
 
n
 
g

The global 

result is 3 !

So the 

Levenshtein 

distance is 3

0
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Levenshtein distance - end

Backtrack to find path actually taken

9     8      7      7     6      5      5     5      4     3

8     7      6      6     5      4      4     4      3 4

7     6      5      5     4      3     3     3 5      5

6     5      4      4     3      2 3 4      4      5

5     4      3      3     2 3 3     3      4      5

4     3      2      2 2 2 2     3      4      5

3     2      1 1 2 2      3     4      5      6

2     1      0 1     2      3      4     5      6      7

1     0 1      2     3      4      5     6      7      8

0 1      2      3     4      5      6     7      8      9

p r o c e s s i n g

p
 
 
r
 
o
 
s
 
s
 
e
 
s
 
i
 
n
 
g

Remember:

The question is 

always how we 

got to a square

We see that the 

distance is 3

Since, e.g., 

1. substitution

2. insertion

3. deletion
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Generalization to DP

If not all substitutions are equally probable

then we add the cost function instead of 1

We can also have costs for insertions and deletions

Di j = min (  Di-1 j + Ci-1 j; I j ; Di-1 j-1 + Ci-1 j-1; I j ; Di j-1 + Ci-1 j; I j   )

And even more general rules are often used

This algorithm is called Dynamic Programming 

and many other names

– Viterbi algorithm

– Levenshtein distance

– Dynamic Time Warping

but they are all basically the same thing!

The algorithm(s) are computationally efficient 

since they find a global minimum based on local decisions
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DTW

DTW uses the Dynamic Programming technique 

for matching spoken words

The input is a feature vector (e.g., LPC, cepstrum)

and is separately matched to each dictionary word feature vector

and the closest word is the winner!

The cost for each substitution needs to represent 

how similar the two sounds sound

In isolated word recognition systems 

energy contours are used first to isolate the words

linear time warping is then used to normalize the duration

but special mechanisms are used for endpoint location flexibility

In connected word recognition systems

the endpoint of each recognized utterance is used

as a starting point for searching for the next word

In speaker-independent recognition systems

multiple templates are used for each reference word
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Markov Models

An alternative to DTW is based on Markov Models

A discrete-time left-to-right first order Markov model

A DT LR second order Markov model

In Markov models future states depend only on the current state

What is the probability of remaining stuck in a state?

State          1                 2                 3                4

a11 a22 a33 a44

a12 a23
a34

probabilities

a12

a11 a22 a33 a44

a12 a23 a34

a13 a24

a11 + a12 = 1,

a22 + a23 = 1, 

etc.

a11 + a12 + a13 = 1,

a22 + a23 + a24 = 1, 

etc.
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Example

Which strings are possible? What are their probabilities?

◼ ABCD      p = 0.5*0.5*1 = 0.25

◼ ABD p = 0.5 * 0.5 = 0.25

◼ ACD p = 0.5 = 0.5

Note that the probabilities sum to 1 (of course!)
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State          A                B                C                D

0.5 0.5 1

0.5 0.5



Example

Which strings are possible?

◼ ABCD 

◼ AABBCCDD

◼ ABBBBBBBCD

◼ ACBD

◼ ABBCDCCD

◼ AAAAA....
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State          A                B                C               D

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

Which string is most probable?

What is its probability?

Which strings are 2nd most probable?

What are their probability?

What is the probability of an infinite string?



Markov Models - cont.

General DT Markov Model

Model jumps from state to state with given probabilities

e.g.     1 1 1 1 2 2 3 3 3 3 3 3 3 3 4 4 4

or 1 1 2 2 2 2 2 2 2 2 2 4 4 4  

1

2

3

4
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Markov Models - cont.

Why use Markov models for speech recognition?

– states can represent phonemes (or whatever)

– different phoneme durations (but exponentially decaying)

– phoneme deletions using 2nd or higher order

So time warping is automatic !

How do we use it?

We first build a Markov model for each word

Then, given an utterance

we select the most probable word
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HMM

But the same phoneme can be said in different ways

so we need a Hidden Markov Model

a11 a22 a33 a44

a12 a23
a34

b11
b14

b12

b13

1
2 3

4

acoustic

phenomenon

aij are transition probabilities

bik are observation (output) probabilities

b11 + b12 + b13 + b14 = 1,

b21 + b22 + b23 + b24 = 1, 

etc.
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HMM - cont.

For a given state sequence   S1 S2 S3 … ST

the probability of an observation sequence O1 O2 O3 … OT

is      P(O|S) = bS1O1  bS2O2  bS3O3  
… bSTOT

For a given hidden Markov model M = { states, a, b }

the probability of the state sequence S1 S2 S3 … ST

is (the initial probability of S1 is taken to be pS1)

P(S|M) = pS1 aS1S2 aS2S3 aS3S4
… aST-1ST

So, for a given hidden Markov model M

the probability of an observation sequence O1 O2 O3 … OT

is obtained by summing over all possible state sequences

Y(J)S   DSP     Slide 97



HMM - cont.

P(O| M) = S P(O|S) P(S|M)  

= S pS1 bS1O1   aS1S2 bS2O2   aS2S3 bS2O2 
…

So for an observation sequence we can find 

the probability of any word model

(but this can be made more efficient using the forward-backward algorithm)

How do we train HMM models?

The full algorithm (Baum-Welch) is an EM algorithm

An approximate algorithm is based on the Viterbi (DP) algorithm

(Sorry, but beyond our scope here)
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The new world

DTWs and HMMs were the state of the art until recently

DTWs have little training time but long run times

HMM have long training times but short run times

Recently Deep Neural Networks have taken over many applications

DNNs

◼ use essentially no knowledge about the speech signal

◼ require astronomical amounts of data to train

◼ have very long training times

◼ provide no reasoning as to their decisions

◼ can frequently outperform classical methods

but can also fail catastrophically 

and can be subject to adversarial attacks
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Communications

signal processing



Application: Data Communications

Communications is moving information from place to place

Information is the amount of surprise, and can be quantified!

Communications was originally analog – telegraph, telephone

There are many forms of digital communications that we use every day

◼ Mobile (cellular) 

– Internet 

– from 4G voice is simply packet data

◼ Television

– DVB (Idan plus)

– Cable TV (DOCSIS)

◼ Home Internet access

– DSL (ADSL, VDSL)

– Cable modem (DOCSIS again)

◼ Internet of Things 

– smart home / smart city

– Industry 4.0 Y(J)S   DSP     Slide 101



Digital Communications

All physical channels 

◼ have limited bandwidth (BW)

◼ add noise (so that the signal to noise ratio SNR is finite)

so analog communications always degrades

and there is no way to completely remove noise

In analog communications the only solution to noise

is to transmit a stronger signal

since later amplification amplifies N along with S

Communications has become digital

◼ digital communications is all or nothing

perfect reception or no data received
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Shannon’s Theorems

1. Separation Theorem

2. Source Encoding Theorem

Information can be quantified (in bits)

3. Channel Capacity Theorem

C = BW log2 ( SNR + 1 )

Warning: Shannon’s Laws are not constructive

they only give us targets to aim for!
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Modulation

We already learned that modulation means 

changing parameters of a signal in order to carry information

We previously saw AM and FM in which 

the signal carried analog information

Shannon leads us to ask how a signal can carry digital information 

A simple example would be to modulate the amplitude of a DC signal

allowing it to be 0 or 1

We could also modulate the amplitude of a sinusoid (like in AM, but 0/1)

Since we will often need bidirectional transfer of information

it is convenient to package the modulator and demodulator

in a single box called a modem

(A similar box for analog modulation is called a transceiver)
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Digital communications

Shannon’s theorems taken together

explain why all communications has become digital

Analog communications always have quality degradation

Vinyl records are very limited in spectral and dynamic range

and add a tremendous amount of noise

A Compact Disk is essentially undistinguishable form the original

When recording from tape (e.g., cassette) to tape

each successive recording is noisier, until only noise remains

Copying CD to CD the 1000th copy is indistinguishable from the 1st

Scratching a CD/DVD,  either there is no effect

or nothing works at all (in video there can be missing squares)
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The simple reason

Digital communications inherit a fundamental property of the bit

it is either 0 or 1 – on of off – perfect or nothing

Either you receive exactly what was sent

or you receive nothing (complete garbage)

But why is it perfect and not always nothing?

If I transmit a voltage of 3.14159... volt, but you receive 2.71828... volt

even if I tell you that there was noise and that isn’t what I sent

you can’t possibly figure out the right value

If I transmit a bit 1 and we obey Shannon’s laws

you should receive a bit 0

But even if you don’t and I tell you that you received the wrong value

then you know that the correct answer is 1 (error correction)
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Separation Theorem

The separation theorem is logically the first

even if chronologically the last

The theorem states that the optimal method of transporting 

any kind of information (analog or digital) involves

– properly converting it into digital format (Shannon’s 2nd theorem)

– properly modulating an analog signal (Shannon’s 3rd theorem)

– recovering digital information from the received analog signal

– recovering original format information from the digital information

Note that 

– the source decoder is the inverse of the source encoder

input with the digital format it reproduces the original information

– the channel decoder is the inverse of the channel encoder

input with the undistorted transmitted signal 

it reproduces the digital format information

– the channel encoder is designed with knowledge of the channel 
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Channels

The problem with communications is that all physical channels

distort the signals traversing them

So that the signal received is not the same as the signal transmitted

Were it not for this distortion communications would be trivial

and there would be no limit on the possible (bit-)rate 

From physics we know that all channels:

◼ add noise (at least some dependent on temperature)

◼ limit bandwidth (may be low-pass or bandpass)
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Information

What is information anyway?

Information is the amount of surprise

there is no information in yesterday’s newspaper

since we know everything and it doesn’t surprise us any more

Similarly, a constant sinusoidal signal carries no information

since it is deterministic – there is no surprise

This deterministic On/Off signal taking only 1 of two values 

carries no information

But this one does carry information (it is stochastic - it surprises us!)
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Shannon’s bits

Shannon taught us that information can be quantified

You can compare the amount of information in a book

to that in a piece of music or in a picture

just like you can compare the weight of lead and feathers

The unit often used is the bit

Beware, Shannon’s bit is more general than Tukey’s binary digit

Tukey’s bit is only useful for encoding numbers

while Shannon’s bit can be used for any form of information

Consider the set of all items of interest

(e.g., all news items, all types of animals, all letters in an alphabet)

How much information is involved in selecting one item from this set?

Shannon’s bit is defined as follows:

◼ ask questions with yes/no (binary) answers until you find out

◼ the minimum number of questions required 

is the information content in bits
Y(J)S   DSP     Slide 110



A simple example

Children play a game called 21 questions

One player (the puzzler) thinks of something – say an elephant

The other player (the questioner) asks yes/no questions

If he finds out in 21 questions or less the questioner wins

(and proves that the puzzler’s brain contains < 21 bits of information)

otherwise the puzzler wins

1. Is it an animal? YES

2. Is it bigger than a bread-box? YES

3. Does it live in the water? NO

4. Does it live in Africa? YES

5. Is it a lion? NO

6. Is it an elephant? YES

The questioner wins, but this is not the optimal set of questions

The optimal strategy asks questions 

that divide the remaining possibilities in half!
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When both bits are the same

When are Tukey’s bits the same as Shannon’s?

Assume that the set of all possibilities consists of the numbers

between 0 and 15

The puzzler thinks of the number 10

The questioner asks the optimal set of questions as follows:

1. Is greater than 7 ? YES = 1

2. Is greater than 11? NO = 0

3. Is it greater than 9 ? YES = 1

4. Is it greater than 10? NO = 0

So the Shannon information quantity is 4 bits

and the answers form the Tukey binary number for 10 – 1010

What should the questioner do if the items are not equally probable?
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Source Encoding Theorem

What does this have to do with communications?

Shannon tells us that we need to first encode the information 

according to Shannon’s 2nd law

Example: if the current letter in English text is Q

how much information is there in the fact 

that the following letter is U?

Exactly zero! So we shouldn’t waste bits on it!

Example: assume a language with 4 letters A, B, C, and D

If they are all equally probable

then we can encode 00, 01, 10, 11   – 2 bits per letter!

But if p(A) = 1/2    p(B) = 1/4    p(C)=p(D)=1/8 

how should we encode the letters?

A=1 B=01 C=001 D=000

Average bits per letter = 1/2*1 + 1/4*2 + 1/8*3 + 1/8*3 = 1.75 bits

This is smaller – and the minimal amount!
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Shannon information

We can generalize the last example

If we have N possible symbols, each of which has probability pi

then the information per symbols is given by

< log
1

pi
> = − σi=1

N pi log pi

If we use the base-2 logarithm (physicists use ln and call this entropy)

we get the information in bits per symbol

If there are 2m equally probable symbols (each with p=2-m)

the information of selecting 1 symbol is (obviously) m bits 

The information content of a string of K independent symbols

is K times the information of a single symbol

What is the entropy in bit/symbol of our previous example?

p(A) = 1/2 p(B) = 1/4    p(C)=p(D)=1/8

1/2 * log2(2) + 1/4 log2(4) + 1/8 log2(8) + 1/8 log2(8) = 1.75 bits/symbol
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Shannon encoding

Shannon’s 2nd law is not constructive –

it tells us how many bits are required to capture information

but doesn’t teach us how to actually encode information 

So generations of mathematicians and engineers have developed

coding methods that approach Shannon’s information limit

◼ Ziv and Lempel developed a digital file compression method

that approaches Shannon’s limit asymptotically (for large files)

◼ the speech compression methods we already learned

are lossy methods of Shannon encoding for speech signals

◼ the Joint Photographic Experts Group have developed

a lossy mechanism to encode images

◼ the Motion Pictures Expert Group have developed 

many lossy mechanisms for encoding video

If Ziv-Lempel compression can compress a file to 1/5 its size

why can’t we recompress that file to 1/25 the original?
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Error detection/correction

Information theory teaches us how to optimally encode information 

and it also teaches us how to protect information from errors 

You all know about parity bits

For example, we can add 1 bit to each byte making the number of 1s even

this adds 12.5% overhead 

and detects any single bit error 

but can’t correct any errors

Building on this we can make a simple error correction technique

that adds 16 bits to 64, i.e., 25% overhead

but can detect any two errors 

and correct any single error

What happens if there two errors in the same row or column?

What happens if the error is in the parity check bits?

There are much more sophisticated error correction schemes!
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To FEC or not to FEC

Shannon’s separation theorem implies

that it is suboptimal to use data-layer Error Correction schemes

This is because an ECC always adds extra non-information bits

reducing the information bit rate

Yet, many communications systems use error detection/correction

◼ CRC (Cyclic Redundancy Code) in Ethernet 

◼ turbo codes in cellular communications

◼ Reed Solomon FEC in ADSL and optical networks

This is because unlike the assumptions of the capacity theorem 

the SNR is often not stationary due to noise events and fading

resulting in errors in the recovered information

Signal layer ECC methods (e.g., TCM) 

don’t contradict the separation theorem

source

encoder

ECC

encoder

source

decoder

ECC

decoder

channel
modulator demodulator
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Channel capacity theorem

Shannon’s third theorem states that there is an upper limit

on the data rate in which bits can be transferred in a channel

This is the main reason a 100 Mbps Internet connection 

costs more than a 20 Mbps one!

If there were no such limit then 

why not give the customer as much as the routers can forward?

This capacity depends on 

◼ the Signal to Noise ratio

the amplitude of the modulated signal 

divided by the amplitude of the noise added by the channel

◼ the bandwidth of the analog channel (in Hz)

which is why communications people frequently say 

bandwidth instead of data-rate!

Since this is a theorem in signal processing we are going to prove it
Well, actually our proof has a lot of holes

one day you should read Shannon’s real proof – just for the beauty of it!
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Channel Capacity (1)

Let’s first prove that a channel with no noise has infinite capacity

even if its bandwidth is close to zero

Let’s take some large amount of information

◼ source encode it into bits   1011101001011110001010100010...

◼ add “0.” at the beginning 0.1011101001011110001010100010...

to obtain a number between 0 and 1

◼ place precisely that voltage as DC on the wire

connecting transmitter to receiver

◼ since there is no noise precisely this voltage will be received

even though the bandwidth is small (DC requires no bandwidth!)

◼ there is no physical limit on how fast this voltage can be measured

So we can transfer a large amount of data in negligible time

which means the capacity is infinite
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Channel Capacity (2)

Now let’s prove that a channel with infinite bandwidth 

has infinite capacity even if it has noise of peak-to-peak value N

Let’s take some large amount of information

◼ source encode it into bits   1011101001011110001010100010...

◼ for every 0 bit transmit 0 voltage for T seconds

for every 1 bit transmit 1.5N voltage for T seconds

◼ for every 0 bit the receiver will see a voltage between –N/2 and N/2

for every 1 bit it will see a voltage between N and 2N

◼ since there is no overlap the receiver can identify 0/1 with no error

◼ since the bandwidth is infinite, we can send T→0

So we can transfer a large amount of data in negligible time

which means the capacity is infinite
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Shannon’s capacity theorem

If there is both noise and limited bandwidth:

◼ assume (wolg) that we transmit some signal with values between 0 and S

◼ assume that the channel adds DC-less noise with uniform distribution

we’ll call the peak-to-peak noise N

so that the noise values are between –N/2 and +N/2

◼ the receiver always sees values between –N/2 and S+N/2

so the receiver’s dynamic range is S+N

◼ to maximize the information per symbol w/o overlap

we space the signal levels by N

◼ so there can be (S+N)/N = S/N + 1 = SNR+1 different symbols

◼ hence each symbol contains log2(SNR + 1) bits

◼ but there can be BW symbols per second 

Hence, the maximum information rate   C = BW log2(SNR + 1) bit/s

The maximum spectral efficiency is C/BW = log2(SNR + 1) bit/s/Hz

N

S

0

S+N/2

-N/2

S+N(S+N)/N  
levels
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Capacity for frequency-
dependent SNR 

The capacity theorem assumed that the SNR was 

◼ constant from DC to BW

◼ zero over BW

or more generally 

◼ constant in some passband

◼ zero outside the passband

Which will not be the case if either

◼ the signal attenuation (including multipath cancellation)     

◼ the noise (including interference) 

or both, vary with frequency

The extension of the theorem is simple

◼ divide the passband into channels of bandwidth Δf centered at f

◼ the capacity theorem states that for the channel

Cf ≈ log2(SNR(f) + 1) Δf

◼ the composite capacity is ∑f log2(SNR(f) + 1) Δf

The theorem becomes exact when we send Δf → 0

and then C = ∫ log2(SNR(f) + 1) df

SNR

f
BW

SNR

f
BW0

Cf

f
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Water pouring theorem

The converse to Shannon’s channel capacity theorem

is Gallager’s water pouring theorem

The spectrum of the optimum (capacity-achieving) modulated signal 

is given by the water pouring algorithm

◼ fill a pitcher with a volume of water 

representing the total power to be transmitted

◼ pour the water over the reciprocal SNR(f) graph (Noise to Signal Ratio)

This power spectrum can be achieved by

◼ spectral shaping

◼ explicit power loading

NSR

hi SNR – high transmitted 
power

very low SNR – no transmitted power
low SNR – low transmitted power
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Modem design

Shannon’s theorems are existence proofs 

not constructive methods to design modulation techniques

that maximize capacity given channel characteristics

So we need to be creative to reach channel capacity

Over the years many kinds of modems have been designed :

◼ NRZ

◼ RZ

◼ PAM

◼ FSK

◼ PSK

◼ QAM

◼ OFDM
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NRZ

Our first attempt is to simply transmit 1 or 0 (volts?)

This is called Non Return to Zero (i.e., NOT RZ)

Information rate = number of bits transmitted per second (bps)

But this is only good for short serial cables (e.g. RS232), because

◼ requires DC (doesn’t work over radio or fiber)

◼ if DC blocked lose runs of 1s

◼ needs high bandwidth (sharp corners require high frequencies) 

◼ strong InterSymbol Interference

◼ timing recovery may not be possible (if long runs of 0 or 1)

1 1 1 00 1 10
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NRZ needs infinite bandwidth
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infinite BW

very low BW

and this is for 0101010101!

for random bits finite BW causes an additional problem!



NRZ InterSymbol Interference (ISI)
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DC-less NRZ

So what about transmitting -1/+1?

This is better, but not perfect!

◼ DC isn’t exactly zero

◼ if DC blocked worse than before

◼ still is modulation of DC and not for fiber or radio

◼ still has high bandwidth (sharp corners)

◼ even without decay, long runs ruin timing recovery

1 1 1 00 1 10
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RZ

What about Return to Zero ?

◼ never long + runs, so DC decay less important

◼ BUT half-width pulses 

means twice the number of changes per second 

which requires twice the bandwidth!

Shannon strikes !

1 1 1 00 1 10
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OOK

Even better - use OOK (On Off Keying)

◼ no signal discontinuity (but derivative discontinuities)

◼ absolutely no DC!

◼ based on desired sinusoid (“carrier”) frequency

so suitable for radio and fiber

◼ can hear it (Morse code)

1 1 1 00 1 10
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NRZ - Bandwidth

The PSD (Power Spectral Density) of NRZ is a sinc (sinc(x) = sin(x)/x)

◼ the first zero is at the bit rate (from the uncertainty principle!)

◼ so channel bandwidth limits bit rate

◼ DC depends on level placement (may be zero or spike)
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OOK - Bandwidth

PSD of -1/+1 NRZ is the same, except there is no DC component

If we use OOK the sinc is mixed up to the carrier frequency

◼ (The spike helps in carrier recovery)

Y(J)S   DSP     Slide 132

fc



From NRZ to n-PAM

NRZ

4-PAM

(2B1Q)

8-PAM

◼ Each level is called a symbol or baud

◼ Bit rate = number of bits per symbol * baud rate

+3

+1

-3

-1

11 10 01 01 00 11 01

111 001 010 011 010 000 110

GRAY CODE

10 => +3

11 => +1

01 => -1

00 => -3

GRAY CODE

100 => +7

101 => +5

111 => +3

110 => +1

010 => -1

011 => -3

001 => -5

000 => -7

+1

-1

1 1 1 0 0 1 0
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PAM - Bandwidth

BW (actually the entire PSD) doesn’t change 

with the number of levels !

So we should use many bits per symbol

But then noise becomes more important

(Shannon strikes again!)

BAUD 

RATE
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ASK

What about Amplitude Shift Keying  - ASK ?

2 bits  / symbol

◼ generalizes OOK in the same way that PAM generalized NRZ

◼ not widely used since hard to differentiate between levels

when there is noise

How do we find the amplitude of a sine?

11 10 01 01 00 11 01
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FSK

What can we do about noise?

If we use frequency diversity we can gain 3 dB

Use two independent OOKs with the same information

(no DC)

This is FSK - Frequency Shift Keying

We maintain continuous phase for minimum bandwidth

Note that sinusoids are orthogonal – but only over long times !

1 1 1 0 0 1 0 1
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FSK in the frequency domain

FSK is based on orthogonality of sinusoids of different frequencies

make decision only if there is energy at f1 but not at f2

The uncertainty theorem says that the uncertainty in frequency

is inversely proportional to the time duarion

So when we leave a frequency for a short amount of time

its spectrum is not a line – but a sinc!

So FSK is robust but slow  (Shannon strikes again!)

f
1

f
2
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PSK

What about sinusoids of the same frequency but different phases?

Correlations reliable after a single cycle (∫sin(ωt) cos(ωt) dt = 0 on 1 cycle!)

So let’s try BPSK

1 bit / symbol

or QPSK
2 bits  / symbol

Bell 212 2W 1200 bps

V.22

1 1 1 0 0 1 0 1

11 10 01 01 00 11 01
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QAM

Finally, we can combine PSK and ASK (but not FSK)

by changing both the amplitude and the phase

2 bits per symbol

This is called Quadrature Amplitude Modulation

This is getting confusing

11 10 01 01 00 11 01
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The secret math behind it all

Remember the Hilbert Transform?

x(t) = A(t) cos ( 2 p fc t + f(t) )

y(t) = A(t) sin ( 2 p fc t + f(t) )
A(t) is the instantaneous amplitude, f(t) is the instantaneous phase

This can be used to demodulate analog/digital communications signals

For digital modulations we draw constellation diagrams

◼ x and y as axes

◼ A is the radius, f the angle

For example, QPSK can be drawn (rotations are time shifts)
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QAM constellations 

16 QAM V.29 (4W 9600 bps)

V.22bis 2400 bps Codex 9600 (V.29)

2W

first non-Bell modem (Carterphone decision)

Adaptive equalizer 

Reduced PAR constellation

Today - 9600 fax!

8PSK

V.27

4W

4800bps
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Voicegrade modem constellations
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Spectral efficiency of modulations

We defined spectral efficiency as the bit/s per Hz

We can now compare the modulation techniques we have seen so far

Note that we are using raw (DSB) efficiencies

values for PSK and QAM can be improved by a factor of 2 !

modulation bit/symbol BW/symbol rate spectral efficiency

NRZ 1 1 1

BPSK 1 2 0.5

QPSK 2 2 1

8PSK 3 2 1.5

16QAM 4 2 2

64QAM 6 2 3

256QAM 8 2 4
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FDM

QAM (including PSK as a special case) is a very efficient modulation

approaching the Shannon capacity for simple bandpass channels

But the spectrum of a QAM signal is inflexible

like all discretely keyed modulations of a single carrier

it is a sinc centered at fc with first zeros at fc ± symbol-rate

The spectrum can be shaped using a Tomlinson precoder

but this requires a feedback channel and precomputing the filter

So, QAM does not lend itself to water-pouring

The trick is to use Frequency Domain Multiplexing

We saw FDM as a technique to mux different information sources

Here we divide a single information stream into blocks of bits

and mux them together using distinct sub-carriers

Each sub-carrier signal can 

◼ have its own power level

◼ use its own modulation technique (PSK, QPSK, 16QAM, 64QAM, ...)

thus directly implementing water pouring
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FDM combats ISI but creates ICI

FDM uses many subchannels, each with low bandwidth but low data rate

Since the data rate is low, there is essentially no ISI

And since each subchannel is localized in frequency

we can perform equalization in the frequency domain (FEQ)

i.e., simply multiply each frequency and shift its phase

But, we need to space the sub-carriers far enough apart

to avoid InterChannel Interference

This squanders bandwidth, distancing us from the Shannon capacity

Y(J)S   DSP     Slide 145



OFDM
The solution is called Orthogonal FDM (OFDM)

◼ all sub-channels use the same symbol rate (even if different 

modulations) 

◼ sub-carriers are spaced at precisely the symbol rate

◼ the sub-carriers are the precisely orthogonal 

and hence do not interfere with each other

◼ ICI is eliminated with no guard frequencies needed

◼ simple implementation based on the FFT

Y(J)S   DSP     Slide 146



Why are the channels orthogonal?

Let’s look at the baseband signal 

where all sub-carriers are multiples of the symbol rate

so that there are an integral number of sinusoid cycles in a symbol

Any two such signals are precisely orthogonal

0

2π

ω
𝑁
𝑒𝑖𝑛1𝜔𝑡 𝑒−𝑖𝑛2𝜔𝑡 𝑑𝑡 = 0  (the only requirement is for a whole number of cycles of sin Δω t !)

and the same is true if we arbitrarily phase shift or amplify the signals
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Spectral efficiency

OFDM provides the minimum possible sub-carrier spacing

and hence eliminates the need for guard bands

Now each sub-channel effectively occupies only symbol-rate of bandwidth

So the spectral efficiencies improve by a factor of 2 !

modulation bit/symbol BW/symbol

rate

spectral efficiency

BPSK 1 1 1

QPSK 2 1 2

8PSK 3 1 3

16QAM 4 1 4

64QAM 6 1 6

256QAM 8 1 8 Y(J)S   DSP     Slide 148



FFT
In order to transmit each sub-channel

we should modulate a baseband signal

up-mix each to the desired sub-carrier frequency (multiply by 𝑒𝑖𝜔𝑐𝑡)

and add the sub-channels together

The upmixing can be performed in parallel for all sub-carriers

by the inverse Fourier transform (Zimmerman and Kirsch 1967)

and the FFT does it quickly    (Weinstein and Ebert 1969)
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OFDM modem paradigm
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Cyclic prefix

What we previously derived almost works

For analog digital signal processing

linear cyclic convolution in the time domain  y = h * x

is equivalent to multiplication in the frequency domain 

So, the linear convolution in the analog channel 

has to be converted into cyclic convolution for the digital channel

This is done by adding a Cyclic Prefix to the signal 

which basically acts as a guard interval to eliminate ISI

The CO duration tends to be from 1/32 up to 1/4 of the symbol duration

and has to be long enough to include the maximum ISI spread

For example, if ISI is due to multipath

then the CP must be long enough to incorporate the longest delayed path

Yk = Hk Xk 

Y(ω) = H(ω) X(ω)

OFDM symbol = output of IFFTCP

CP length
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CP at work
OFDM splits the signal in the time domain into frames

In order for the signal processing of each frame to be independent

the CP ensures that delay spread is within the received frame

As a simple example, assume a frame of 8 samples

a 2-sample multipath  yn = xn + h1 xn-1 + h2 xn-2 and CP of 2 samples

The OFDM frame before CP insertion is   x0 x1 x2 x3 x4 x5 x6 x7

After CP insertion the xmted OFDM frame is    x6 x7 x0 x1 x2 x3 x4 x5 x6 x7

The received OFDM signal is y6 y7 y0 y1 y2 y3 y4 y5 y6 y7

where y6 and y7 contain ISI from the previous frame and are discarded

and

All the information is present for equalization to recover the original x0 
... x7

and the matrix is circulant – which is solved in the frequency domain! 
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4G OFDM signal structure

f

t
GUARD BAND

GUARD BAND

sub-carrier

OFDM 
symbol

For 4G:
• channel bandwidth   ..., 5, 10, 15, or 20 MHz 
• guard band overhead is 10%
• sub-carrier spacing = 15 kHz
• OFDM symbol duration = 1/15KHz = 66.67 μsec

• short CP = 4.7 μsec so total duration = 71.367 μsec
• 1 slot = 7 symbols ≈ ½ msec*

• long CP = 16.7 μsec so total duration = 83.367 μsec
• 1 slot = 6 symbols ≈ ½ msec*

* CP durations are adjusted so that the slot is precisely ½ msec

BW

(MHz)

usable 

BW

(MHz)

subchanne

ls
FFT

5 4.5 300 512

10 9 600 1024

15 13.5 900 1536

20 18 1200 2048
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OFDM modem

bit
stream

interleaving 
and FEC

bit 
allocation IFFT

CP
insertion

D/A

upconversiondownconversion

bit 
serializer

FFTCP
removal

A/D FEQ

modulators

demodulators bit
stream

FEC

framer

deframer

antialisasing
filter

power
amplifier

Warning: this is somewhat over-simplified!
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OFDMA

4G and 5G cellular are based on OFDM 

but need Multiple Access and Duplexing mechanisms too

For MA an orthogonal version of FDMA is used

◼ signals from/to different users occupy different frequencies 

◼ the SubCarrier Spacing must be exactly the OFDM symbol rate 

For duplexing there are two alternatives:

◼ Frequency Domain Duplexing

different frequency bands are used for the UL and DL

for example n1: UL 1920-1980 MHz, DL 2110-2170 MHz

◼ Time Domain Duplexing

a single frequency band is used

for example n38: 2570-2620 MHz for both UL and DL
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OFDMA

The basic OFDM paradigm can be readily extended to OFDMA

by allocating time-frequency Resource Elements to different users

In the DL direction the base-station transmits to all users

and each needs to know which REs it needs to extract

In the UL direction each UE transmits only in its REs

in order not to interfere with other UEs in the cell

f

t
GUARD BAND

GUARD BAND

Resource
Element

SCS

symbol
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Financial signal processing



Application : Stock Market

This signal is hard to predict (extrapolate)

◼ self-similar and fractal dimension

◼ polynomial smoothing leads to overfitting

◼ noncausal MA smoothing (e.g., Savitsky Golay) doesn’t extrapolate

◼ causal MA smoothing leads to significant delay

◼ AR modeling works well

– but sometimes need to bet the trend will continue

– and sometimes need to bet against the trend
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