
14

The Fast Fourier Transform

14.4 Other Common FFT Algorithms

In the previous section we saw the radix-2 DIT algorithm, also known as
the Cooley-Tukey algorithm. Here we present a few more FFT algorithms,
radix-2 DIF, the prime factor algorithm (PFA), non-power-of-two radixes,
split-radix, etc. Although different in details, there is a strong family re-
semblance between all these algorithms. All reduce the N2 complexity of

1



2 THE FAST FOURIER TRANSFORM

the straightforward DFT to N log N by restructuring the computation, all
exploit symmetries of the Wnk

N , and all rely on the length of the signal N
being highly composite.

First let us consider the decimation in frequency (DIF) FFT algorithm.
The algebraic derivation follows the same philosophy as that of the DIT. We
start by partitioning the time sequence, into left and right subsequences

xL
n = xn for n = 0, 1, . . .

N

2
− 1

xR
n = xn+ N

2

and splitting the DFT sum into two sums.

Xk =
N−1∑

n=0

xnWnk
N =

N
2
−1∑

n=0

xn Wnk
N +

N−1∑

n= N
2

xn Wnk
N (14.5)

=

N
2
−1∑

n=0

xL
n Wnk

N +

N
2
−1∑

n=0

xR
n Wnk

N W
Nk
2

N

Now let’s compare the even and odd Xk (decimation in the frequency do-
main). Using the fact that W 2

N = WN
2

X2k =

N
2
−1∑

n=0

(xL
n Wnk

N
2

+ xR
n Wnk

N
2

WNk
N )

X2k+1 =

N
2
−1∑

n=0

(xL
n Wnk

N
2

+ xR
n Wnk

N
2

WNk
N W

N
2

N ) Wn
N

and then substituting W kN
N = 1 and W

N
2

N = −1 we find the desired expres-
sions.

X2k =

N
2
−1∑

n=0

(xL
n + xR

n ) Wnk
N
2

= (XL
k + XR

k )

X2k+1 =

N
2
−1∑

n=0

(xL
n − xR

n ) Wnk
N
2

Wn
N

Unlike the DIT case, the odd frequency components here can not be
elegantly separated into DFTs of half-length subsequences due to the de-
pendence of Wn

N on n; but this does not rule out recursive computation of
the DFT. We need only multiply all odd outputs of the previous stage by
Wn

N before continuing.



14.4. OTHER COMMON FFT ALGORITHMS 3

Just as for the DIT we found similarity between Fourier components in
different frequency partitions, for DIF we find similarity between frequency
components that are related by decimation.

It is thus evident that the DIF butterfly can be drawn

XL
k

XR
k

� �

� �

�� W n
N

−

X2k

X2k+1

which is different from the DIT butterfly, mainly in the position of the
twiddle factor.

x0

x1

x2

x3

x4

x5

x6

x7 �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

−

−

−

−

�

�

�

�

�

�

�

�

W0
8

W1
8

W2
8

W3
8

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

−

−

−

−

�

�

�

�

�

�

�

�

W0
8

W2
8

W0
8

W2
8

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

−

−

−

−

�

�

�

�

�

�

�

� X0

X4

X2

X6

X1

X5

X3

X7
�

�

�

�

�

�

�

�

Bit
Reversal

�

�

�

�

�

�

�

� X0

X1

X2

X3

X4

X5

X6

X7

Figure 14.6: Full eight-point radix-2 DIF DFT, with bit reversal on outputs.

We leave as an exercise to complete the decomposition, mentioning that
once again bit reversal is required, only this time it is the outputs that need
to be bit reversed. The final eight-point DIF DFT is depicted in Figure 14.6.


