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9.11 Line Spectral Pairs

Another set of parameters that contain exactly the same information as the
LPC coefficients are the Line Spectral Pair (LSP) frequencies. To introduce
them we need to learn a mathematical trick that can be performed on the
polynomial in the denominator of the LPC system function.

A polynomial of degree M

a(x) =
M∑

m=0

pmxm = a0 + a1x + a2x
2 + . . . aM−2x

M−2 + aM−1x
M−1 + aMxM

is called ‘palindromic’ if am = aM−m, i.e.,

a0 = aM a1 = aM−1 a2 = aM−2 etc.

and ‘antipalindromic’ if am = −aM−m, i.e.,

a0 = −aM a1 = −aM−1 a2 = −aM−2 etc.

so 1 + 2x + x2 is palindromic, while x + x2 − x3 is antipalindromic. It is
not hard to show that the product of two palindromic or two antipalin-
dromic polynomials is palindromic, while the product of an antipalindromic
polynomial with a palindromic one is antipalindromic.

We will now prove that every real polynomial that has all of its zeros on
the unit circle is either palindromic or antipalindromic. The simplest cases
are x+1 and x−1, which are obviously palindromic and antipalindromic, re-
spectively. Next consider a second degree polynomial with a pair of complex
conjugate zeros on the unit circle.

a(x) =
(
x − eiφ

) (
x − e−iφ

)
= x2 − e−iφx − eiφx + eiφe−iφ

= x2 − 2 cos(φ) + 1

This is obviously palindromic.
Any real polynomial that has k pairs of complex conjugate zeros will

be the product of k palindromic polynomials, and thus palindromic. If a
polynomial has k pairs of complex conjugate zeros and the root +1 it will
also be palindromic, while if it has −1 as a root it will be antipalindromic.
This completes the proof.

The converse of this statement is not necessarily true; not every palin-
dromic polynomial has all its zeros on the unit circle. The idea behind the
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LSPs is to define palindromic and antipalindromic polynomials that do obey
the converse rule. Let’s see how this is done.

Any arbitrary polynomial a(x) can be written as the sum of a palin-
dromic polynomial p(x) and an antipalindromic polynomial q(x)

am = 1
2(pm + qm) where

pm = am + aM−m

qm = am − aM−m
(9.39)

(if M is even the middle coefficient appears in pm only). When we are dealing
with polynomials that have their constant term equal to unity, we would like
the polynomials pm and qm to share this property. To accomplish this we
need only pretend for a moment that am is a polynomial of order M +1 and
use the above equation with aM+1 = 0.

am = 1
2(pm + qm) where

pm = am + aM+1−m

qm = am − aM+1−m
(9.40)

Now a0 = p0 = q0 = 1 but pm and qm are polynomials of degree M + 1.

Figure 9.5: The zeros of a polynomial and of its palindromic and antipalindromic com-
ponents. The Xs are the zeros of a randomly chosen tenth order polynomial (constrained
to have its zeros inside the unit circle). The circles and diamonds are the zeros of the p(x)
and q(x). Note that they are all on the unit circle and are intertwined.
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Formally we can write the relationships between the polynomials

a(x) = 1
2

(
p(x) + q(x)

)
where

(
p(x)
q(x)

)
= a(x) ± xM+1a(x−1)

and it is not hard to show that if all the zeros of a(x) are inside the unit circle,
then all the zeros of p(x) and of q(x) are on the unit circle. Furthermore,
the zeros of p(x) and q(x) are intertwined, i.e., between every two zeros
of p(x) there is a zero of q(x) and vice versa. Since these zeros are on the
unit circle they are uniquely specified by their angles. For the polynomial
in the denominator of the LPC frequency response these angles represent
frequencies, and are called the LSP frequencies.

Why are the LSP frequencies a useful representation of the all-pole filter?
The LPC coefficients are not a very homogeneous set, the higher-order bm

being more sensitive than the lower-order ones. LPC coefficients do not
quantize well; small quantization error may lead to large spectral distortion.
Also the LPC coefficients do not interpolate well; we can’t compute them at
two distinct times and expect to accurately predict them in between. The
zeros of the LPC polynomial are a better choice, since they all have the same
physical interpretation. However, finding these zeros numerically entails a
complex two-dimensional search, while the zeros of p(x) and q(x) can be
found by simple one-dimensional search techniques. In speech applications
it has been found empirically that the LSP frequencies quantize well and
interpolate better than all other parameters that have been tried.

EXERCISES

9.11.1 Let’s create a random polynomial of degree M by generating M + 1 random
numbers and using them as coefficients. We can now find the zeros of this
polynomial and plot them in the complex plane. Verify empirically the hard-
to-believe fact that for large M most of the zeros are close to the unit circle
(except for large negative real zeros). Change the distribution of the random
number generator. Did anything change? Can you explain why?

9.11.2 Prove that if all the zeros of a(x) are inside the unit circle, then all the zeros
of p(x) and of q(x) are on the unit circle. (Hint: One way is write the p and
q polynomials as a(x) (1 ± h(x)) where h(x) is an all-pass filter.) Prove that
the zeros of p(x) and q(x) are intertwined. (Hint: Show that the phase of
all-pass filter is monotonic, and alternately becomes π (zero of p) and 0 (zero
of q).)

9.11.3 A pipe consisting of M + 1 cylinders that is completely open or completely
closed at the end has its last reflection coefficient kM+1 = ±1. How does this
relate to the LSP representation?
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9.11.4 Generate random polynomials and find their zeros. Now build p(x) and q(x)
and find their zeros. Verify that if the polynomial zeros are inside the unit
circle, then those of p and q are on the unit circle. Is there a connection
between the angles of the polynomial zeros and those of the LSPs?

9.11.5 The Greek mathematician Apollonius of Perga discovered that given two
points in the plane z1 and z2, the locus of points with distances to z1 and z2

in a fixed ratio is circle (except when the ratio is fixed at one when it is a
straight line). Prove this theorem. What is the connection to


