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Many more special zTs and properties can be derived but this is enough
for now. We will return to the zT when we study signal processing systems.
Systems are often defined by complex recursions, and the zT will enable us
to convert these into simple algebraic equations.

EXERCISES

4.11.1 Write a graphical program that allows one to designate a point in the z-plane
and then draws the corresponding signal.

4.11.2 Plot the z transform of δn,m for various m.

4.11.3 Prove the linearity of the zT.

4.11.4 Express zT(αnxn) in terms of x(z) = zT(xn).

4.11.5 What is the z transform of the following digital signals? What is the ROC?
1. δn,2

2. un+2

3. anu(n)
4. anu(−n − 1)
5. 1

2

n
un + 3

2

n
u−n

4.11.6 What digital signals have the following z transforms?
1. z−2

2. z+2

3. 1
1−2z−1 ROC |z| > |2|

4.11.7 Prove the following properties of the zT:
1. linearity
2. time shift zTsn−k = z−kS(z)
3. time reversal zTs−n = S(1

z )
4. conjugation zTs∗n = S∗(z∗)
5. rescaling zT(αnsn) = S( z

α )
6. z differentiation zT(nsn) = −z d

dzS(z)

4.12 The Other Meaning of Frequency

We have discussed two quite different representations of functions, the Tay-
lor expansion and the Fourier (or z) transform. There is a third, perhaps
less widely known representation that we shall often require in our signal
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processing work. Like the Fourier transform, this representation is based on
frequency, but it uses a fundamentally different way of thinking about the
concept of frequency. The two usages coincide for simple sinusoids with a
single constant frequency, but differ for more complex signals.

Let us recall the examples with which we introduced the STFT in Sec-
tion 4.6. There we presented a pure sinusoid of frequency f1, which abruptly
changed frequency at t = 0 to become a pure sine of frequency f2. Intu-
ition tells us that we should have been able to recover an instantaneous
frequency, defined at every point in time, that would take the value f1 for
negative times, and f2 for positive times. It was only with difficulty that
we managed to convince you that the Fourier transform cannot supply such
a frequency value, and that the uncertainty theorem leads us to deny the
existence of the very concept of instantaneous frequency. Now we are going
to produce just such a concept.

The basic idea is to express the signal in the following way:

s(t) = A(t) cos
(
Φ(t)

)
(4.65)

for some A(t) and Φ(t). This is related to what is known as the analytic
representation of a signal, but we will call it simply the instantaneous rep-
resentation. The function A(t) is known as the instantaneous amplitude of
the signal, and the Φ(t) is the instantaneous angle. Often we separate the
angle into a linear part and the deviation from linearity

s(t) = A(t) cos
(
ωt + φ(t)

)
(4.66)

where the frequency ω is called the carrier frequency, and the residual φ(t)
the instantaneous phase.

The instantaneous frequency is the derivative of the instantaneous angle

2πf(t) =
dΦ(t)

dt
= ω +

dφ(t)
dt

(4.67)

which for a pure sinusoid is exactly the frequency. This frequency, unlike
the frequencies in the spectrum, is a single function of time, in other words,
a signal. This suggests a new world view regarding frequency; rather than
understanding signals in a time interval as being made up of many frequen-
cies, we claim that signals are fundamentally sinusoids with well-defined
instantaneous amplitude and frequency. One would expect the distribution
of different frequencies in the spectrum to be obtained by integration over
the time interval of the instantaneous frequency. This is sometimes the case.
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Consider, for example, a signal that consists of a sinusoid of frequency f1

for one second, and then a sinusoid of nearby frequency f2 for the next sec-
ond. The instantaneous frequency will be f1 and then jump to f2; while the
spectrum, calculated over two seconds, will contain two spectral lines at f1

and f2. Similarly a sinusoid of slowly increasing instantaneous frequency will
have a spectrum that is flat between the initial and final frequencies.

This new definition of frequency seems quite useful for signals that we
usually consider to have a single frequency at a time; however, the instanta-
neous representation of equation (4.65) turns out to very general. A constant
DC signal can be represented (using ω = 0), but it is easy to see that a con-
stant plus a sinusoid can’t. It turns out (as usual, we will not dwell upon the
mathematical details) that all DC-less signals can be represented. This leads
to an apparent conflict with the Fourier picture. Consider a signal composed
of the sum of the two sinusoids with close frequencies f1 and f2; what does
the instantaneous representation do, jump back and forth between them?
No, this is exactly a beat signal (discussed in exercise 2.3.3) with instanta-
neous frequency a constant 1

2 (f1 + f2), and sinusoidally varying amplitude
is with frequency 1

2 |f1 − f2|. Such a signal is depicted in Figure 4.13. The
main frequency that we see in this figure (or hear when listening to such a
combined tone) is the instantaneous frequency, and after that the effect of
A(t), not the Fourier components.

We will see in Chapter 18 that the instantaneous representation is par-
ticularly useful for the description of communications signals, where it is
the basis of modulation. Communications signals commonly carry informa-

Figure 4.13: The beat signal depicted here is the sum of two sinusoids of relatively
close frequencies. The frequencies we see (and hear) are the average and half-difference
frequencies, not the Fourier components.



158 THE FREQUENCY DOMAIN

tion by varying (modulating) the instantaneous amplitude, phase, and/or
frequency of a sinusoidal ‘carrier’. The carrier frequency is the frequency
one ‘tunes in’ with the receiver frequency adjustment, while the terms AM
(Amplitude Modulation) and FM (Frequency Modulation) are familiar to
all radio listeners.

Let us assume for the moment that the instantaneous representation
exists; that is, for any reasonable signal s(t) without a DC component, we
assume that one can find carrier frequency, amplitude, and phase signals,
such that equation (4.65) holds. The question that remains is how to find
them. The answering of this question is made possible through the use of a
mathematical operator known as the Hilbert transform.

The Hilbert transform of a real signal x(t) is a real signal y(t) = Hx(t)
obtained by shifting the phases of all the frequency components in the spec-
trum of x(t) by 90◦. Let’s understand why such an operator is so remarkable.
Assume x(t) to be a simple sinusoid.

x(t) = A cos(ωt)

Obtaining the 90◦ shifted version

y(t) = Hx(t) = A cos
(

ωt − π

2

)
= A sin(ωt)

is actually a simple matter, once one notices that

y(t) = A cos

(
ω

(
t − π

2ω

))
= x

(
t − π

2ω

)

which corresponds to a time delay. So to perform the Hilbert transform of
a pure sine one must merely delay the signal for a time corresponding to
one quarter of a period. For digital sinusoids of period L samples, we need
to use the operator z−

L
4 , which can be implemented using a FIFO of length

L/4.
However, this delaying tactic will not work for a signal made up of more

that one frequency component, e.g., when

x(t) = A1 cos(ω1t) + A2 cos(ω2t)

we have
y(t) = Hx(t) = A1 sin(ωt) + A2 sin(ωt)

which does not equal x(t − τ) for any time delay τ .
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Hence the Hilbert transform, which shifts all frequency components by
a quarter period, independent of frequency, is a nontrivial operator. One
way of implementing it is by performing a Fourier transform of the signal,
individually shifting all the phases, and then performing an inverse Fourier
transform. We will see an alternative implementation (as a filter) in Sec-
tion 7.3.

Now let us return to the instantaneous representation

x(t) = A(t) cos
(
ωt + φ(t)

)
(4.68)

of a signal, which we now call x(t). Since the Hilbert transform instanta-
neously shifts all A cos(ωt) to A sin(ωt), we can explicitly express y(t).

y(t) = H x(t) = A(t) sin
(
ωt + φ(t)

)
(4.69)

We can now find the instantaneous amplitude by using

A(t) =
√

x2(t) + y2(t) (4.70)

the instantaneous phase via the (four-quadrant) arctangent

φ(t) = tan−1 y(t)
x(t)

− ωt (4.71)

and the instantaneous frequency by differentiating the latter.

ω(t) =
dφ(t)

dt
(4.72)

The recovery of amplitude, phase, or frequency components from the original
signal is called demodulation in communications signal processing.

We have discovered a method of constructing the instantaneous repre-
sentation of any signal x(t). This method can be carried out in practice for
digital signals, assuming that we have a numeric method for calculating the
Hilbert transform of an arbitrary signal. The instantaneous frequency simi-
larly requires a numeric method for differentiating an arbitrary signal. Like
the Hilbert transform we will see later that differentiation can be imple-
mented as a filter. This type of application of numerical algorithms is what
DSP is all about.


