
532 THE FAST FOURIER TRANSFORM

14.1 Complexity of the DFT

Let us recall the previously derived formula (4.32) for the N -point DFT

Xk =
N−1∑
n=0

xnW nk
N

where the Nth root of unity is defined as

WN ≡ e−i
2π
N = cos

(
2π
N

)
− i sin

(
2π
N

)

How many calculations must we perform to find one Xk from a set of N
time domain values xn? Assume that the complex constant WN and its pow-
ers W j

N have all been precalculated and stored for our use. Looking closely
at (4.32) we see N complex multiplications and N −1 complex additions are
performed in the loop on n. Now to find the entire spectrum we need to do
N such calculations, one for each value of k. So we expect to have to carry
out N2 complex multiplications, and N(N − 1) complex additions.

This is actually a slight overestimate. By somewhat trickier programming
we can take advantage of the fact that W 0

N = 1, so that each of the Xk>0

takes N − 1 multiplications and additions, while X0 doesn’t require any
multiplications. We thus really need only (N − 1)2 complex multiplications.

A complex addition requires the addition of real and imaginary parts,
and is thus equivalent to two real additions. A complex multiplication can
be performed as four real multiplications and two additions (a + ib)(c +
id) = (ac − bd) + i(bc + ad) or as three multiplications and five additions
(a+ib)(c+id) = a(c+d)−d(a+b)+i

(
a(c + d) + c(b − a)

)
. The latter form

may be preferred when multiplication takes much more time than addition,
but can be less stable numerically. Other combinations are possible, but it
can be shown that there is no general formula for the complex product with
less than three multiplications. Using the former, more common form, we
find that the computation of the entire spectrum requires 4(N − 1)2 real
multiplications and 2(N − 1)(2N − 1) real additions.

Actually, the calculation of a single Xk can be performed more efficiently
than we have presented so far. For example, Goertzel discovered a method of
transforming the iteration in equation (4.32) into a recursion. This has the
effect of somewhat reducing the computational complexity and also saves
the precomputation and storage of the W table. Goertzel’s algorithm, to be
presented in Section 14.8, still has asymptotic complexity of order O(N) per
calculated Xk, although with a somewhat smaller constant than the direct



14.1. COMPLEXITY OF THE DFT 533

method. It thus leaves the complexity of calculation of the entire spectrum at
O(N2), while the FFT algorithms to be derived presently are less complex.
Goertzel’s algorithm thus turns out to be attractive when a single, or only
a small number of Xk values are needed, but is not the algorithm of choice
for calculating the entire spectrum.

Returning to the calculation of the entire spectrum, we observe that both
the additions and multiplications increase as O(N2) with increasing N . Were
this direct calculation the only way to find the DFT, real-time calculation
of large DFTs would be impractical. It is general rule in DSP programming
that only algorithms with linear asymptotic complexity can be performed
in real-time for large N . Let us now see why this is the case.

The criterion for real-time calculation is simple for algorithms that process
a single input sample at a time. Such an algorithm must finish all its compu-
tation for each sample before the next one arrives. This restricts the number
of operations one may perform in such computations to the number per-
formable in a sample interval ts. This argument does not directly apply to
the DFT since it is inherently a block-oriented calculation. One cannot per-
form a DFT on a single sample, since frequency is only defined for signals
that occupy some nonzero interval of time; and we often desire to process
large blocks of data since the longer we observe the signal the more accurate
frequency estimates will be.

For block calculations one accumulates samples in an array, known as a
buffer, and then processes this buffer as a single entity. A technique known
as double-buffering is often employed in real-time implementations of block
calculations. With double-buffering two buffers are employed. While the
samples in the processing buffer are being processed, the acquisition buffer
is acquiring samples from the input source. Once processing of the first buffer
is finished and the output saved, the buffers are quickly switched, the former
now acquiring samples and the latter being processed.

How can we tell if block calculations can be performed in real-time?
As for the single sample case, one must be able to finish all the processing
needed in time. Now ‘in time’ means completing the processing of one entire
buffer, before the second buffer becomes full. Otherwise a condition known
as data-overrun occurs, and new samples overwrite previously stored, but as
yet unprocessed, ones. It takes N∆t seconds for N new samples to arrive.
In order to keep up we must process all N old samples in the processing
buffer before the acquisition buffer is completely filled. If the complexity is
linear (i.e., the processing time for N samples is proportional to N), then
C = qN for some q. This q is the effective time per sample since each sample
effectively takes q time to process, independent of N . Thus, the selection of



534 THE FAST FOURIER TRANSFORM

buffer size is purely a memory issue, and does not impact the ability to keep
up with real-time. However, if the complexity is superlinear (for example,
Tprocessing = qNp with p > 1), then as N increases we have less and less
time to process each sample, until eventually some N is reached where we
can no longer keep up, and data-overrun is inevitable.

Let’s clarify this by plugging in some numbers. Assume we are acquiring
input at a sample rate of 1000 samples per second (i.e., we obtain a new
sample every millisecond) and are attempting to process blocks of length
250. We start our processor, and for one-quarter of a second, we cannot do
any processing, until the first acquisition buffer fills. When the buffer is full
we quickly switch buffers, start processing the 250 samples collected, while
the second buffer of length 250 fills. We must finish the processing within
a quarter of second, in order to be able to switch buffers back when the
acquisition buffer is full. When the dependence of the processing time on
buffer length is strictly linear, Tprocessing = qN , then if we can process a
buffer of N = 250 samples in 250 milliseconds or less, we can equally well
process a buffer of 500 samples in 500 milliseconds, or a buffer of N = 1000
samples in a second. Effectively we can say that when the single sample
processing time is no more than q = 1 millisecond per sample, we can
maintain real-time processing.

What would happen if the buffer processing time depended quadratically
on the buffer size—Tprocessing = qN2? Let’s take q to be 0.1 millisecond per
sample squared. Then for a small 10-millisecond buffer (length N = 10),
we will finish processing in Tprocessing = 0.1 · 102 = 10 milliseconds, just
in time! However, a 100-millisecond buffer of size N = 100 will require
Tprocessing = 0.1 · 1002 milliseconds, or one second, to process. Only by
increasing our computational power by a factor of ten would we be able to
maintain real-time! However, even were we to increase the CPU power to
accommodate this buffer-size, our 250-point buffer would still be out of our
reach.

As we have mentioned before, the FFT is an algorithm for calculating
the DFT more efficiently than quadratically, at least for certain values of N .
For example, for powers of two, N = 2k, its complexity is O(N log2 N). This
is only very slightly superlinear, and thus while technically the FFT is not
suitable for real-time calculation in the asymptotic N → ∞ limit, in practice
it is computable in real-time even for relatively large N . To grasp the speed-
up provided by the FFT over direct calculation of (4.29), consider that the
ratio between the complexities is proportional to N

log2 N . For N = 24 = 16 the
FFT is already four times faster than the direct DFT, for N = 210 = 1024



14.1. COMPLEXITY OF THE DFT 535

it is over one hundred times faster, and for N = 216 the ratio is 4096! It
is common practice to compute 1K- or 64K-point FFTs in real-time, and
even much larger sizes are not unusual.

The basic idea behind the FFT is the very exploitation of the N2 com-
plexity of the direct DFT calculation. Due to this second-order complexity,
it is faster to calculate a lot of small DFTs than one big one. For example, to
calculate a DFT of length N will take N2 multiplications, while the calcula-
tion of two DFTs of length N

2 will take 2(N
2 )

2 = N2

2 , or half that time. Thus
if we can somehow piece the two partial results together to one spectrum in
less than N2

2 time then we have found a way to save time. In Sections 14.3
and 14.4 we will see several ways to do just that.

EXERCISES

14.1.1 Finding the maximum of anN -by-N array of numbers can be accomplished in
O(N2) time. Can this be improved by partitioning the matrix and exploiting
the quadratic complexity as above?

14.1.2 In exercise 4.7.4 you found explicit equations for the N = 4 DFT for N = 4.
Count up the number of complex multiplications and additions needed to
compute X0, X1, X2, and X3. How many real multiplications and additions
are required?

14.1.3 Define temporary variables that are used more than once in the above equa-
tions. How much can you save? How much memory do you need to set aside?
(Hint: Compare the equations for X0 and X2.)

14.1.4 Up to now we have not taken into account the task of finding the trigonomet-
ric W factors themselves, which can be computationally intensive. Suggest at
least two solutions, one that requires a large amount of auxiliary memory but
practically no CPU, and one that requires little memory but is more CPU
intensive.

14.1.5 A computational system is said to be ‘real-time-oriented’ when the time
it takes to perform a task can be guaranteed. Often systems rely on the
weaker criterion of statistical real-time, which simply means that on-the-
average enough computational resources are available. In such cases double
buffering can be used in the acquisition hardware, in order to compensate
for peak MIPS demands. Can hardware buffering truly make an arbitrary
system as reliable as a real-time-oriented one?

14.1.6 Explain how double-buffering can be implemented using a single circular
buffer.



536 THE FAST FOURIER TRANSFORM

14.2 Two Preliminary Examples

Before deriving the FFT we will prepare ourselves by considering two some-
what more familiar examples. The ideas behind the FFT are very general
and not restricted to the computation of equation (14.1). Indeed the two
examples we use to introduce the basic ideas involve no DSP at all.

How many comparisons are required to find the maximum or minimum
element in a sequence of N elements? It is obvious that N−1 comparisons are
absolutely needed if all elements are to be considered. But what if we wish
to simultaneously find the maximum and minimum? Are twice this number
really needed? We will now show that we can get away with only 11

2 times
the number of comparisons needed for the first problem. Before starting we
will agree to simplify the above number of comparisons to N , neglecting the
1 under the asymptotic assumption N � 1.

A fundamental tool employed in the reduction of complexity is that
of splitting long sequences into smaller subsequences. How can we split a
sequence with N elements

x0, x1, x2, x3, . . . xN−2, xN−1

into two subsequences of half the original size (assume for simplicity’s sake
that N is even)? One way is to consider pairs of adjacent elements, such as
x1, x2 or x3, x4, and place the smaller of each pair into the first subsequence
and the larger into the second. For example, assuming x0 < x1, x2 > x3 and
xN−2 < xN−1, we obtain

x0 x3 . . . min(x2l, x2l+1) . . . xN−2

x1 x2 . . . max(x2l, x2l+1) . . . xN−1

This splitting of the sequence requires N
2 comparisons. Students of sorting

and searching will recognize this procedure as the first step of the Shell sort.
Now, the method of splitting the sequence into subsequences guarantees

that the minimum of the entire sequence must be one of the elements of the
first subsequence, while the maximum must be in the second. Thus to com-
plete our search for the minimum and maximum of the original sequence, we
must find the minimum of the first subsequence and the maximum of the sec-
ond. By our previous result, each of these searches requires N

2 comparisons.
Thus the entire process of splitting and two searches requires N

2 +2N
2 = 3N

2
comparisons, or 11

2 times that required for the minimum or maximum alone.
Can we further reduce this factor? What if we divide the original se-

quence into adjacent quartets, choosing the minimum and maximum of the



14.2. TWO PRELIMINARY EXAMPLES 537

four? The splitting would then cost four comparisons per quartet, or N
comparison altogether, and then two N

4 searches must be carried out. Thus
we require N + 2N

4 and a factor of 11
2 is still needed. Indeed, after a little

reflection, the reader will reach the conclusion that no further improvement
is possible. This is because the new problems of finding only the minimum
or maximum of a subsequence are simpler than the original problem.

When a problem can be reduced recursively to subproblems similar to the
original, the process may be repeated to attain yet further improvement. We
now discuss an example where such recursive repetition is possible. Consider
multiplying two (N+1)-digit numbersA and B to get a product C using long
multiplication (which from Section 6.8 we already know to be a convolution).

AN AN−1 · · · A1 A0

BN BN−1 · · · B1 B0

B0AN B0AN−1 · · · B0A1 B0A0

B1AN B1AN−1 · · · B1A0
...

BNAN · · · BNA1 BNA0

C2N · · · CN+1 CN CN−1 · · · C1 C0

Since we must multiply every digit in the top number by every digit in
the bottom number, the number of one-digit multiplications is N2. You are
probably used to doing this for decimal digits, but the same multiplication
algorithm can be utilized for N -bit binary numbers. The hardware-level
complexity of straightforward multiplication of two N -bit numbers is pro-
portional to N2.

Now assume N is even and consider the left N
2 digits and the right N

2
digits of A and B separately. It does not require much algebraic prowess to
convince oneself that

A = AL2
N
2 + AR

B = BL2
N
2 + BR (14.1)

C = ALBL2N + (ALBR + ARBL)2
N
2 + ARBR

= ALBL(2N + 2
N
2 ) + (AL − AR)(BR − BL)2

N
2 + ARBR(2

N
2 + 1)

involving only three multiplications of N
2 -length numbers. Thus we have

reduced the complexity from N2 to 3(N
2 )

2 = 3
4N2 (plus some shifting and

adding operations). This is a savings of 25%, but does not reduce the asymp-
totic form of the complexity from O(N2). However, in this case we have only



538 THE FAST FOURIER TRANSFORM

just begun! Unlike for the previous example, we have reduced the original
multiplication problem to three similar but simpler multiplication problems!

We can now carry out the three N
2 -bit multiplications in equation (14.1)

similarly (assuming that N
2 is still even) and continue recursively. Assum-

ing N to have been a power of two, we can continue until we multiply
individual bits. This leads to an algorithm for multiplication of two N -bit
numbers, whose asymptotic complexity is O(N log2(3)) ≈ O(N1.585). The
slightly more sophisticated Toom-Cook algorithm divides the N -bit num-
bers into more than two groups, and its complexity can be shown to be
O(N log(N)2

√
2 log(N)). This is still not the most efficient way to multiply

numbers. Realizing that each column sum of the long multiplication in equa-
tion (14.1) can be cast into the form of a convolution, it turns out that the
best way to multiply large numbers is to exploit the FFT!

EXERCISES

14.2.1 The reader who has implemented the Shell sort may have used a different
method of choosing the pairs of elements to be compared. Rather than com-
paring adjacent elements x2l and x2l+1, it is more conventional to consider
elements in the same position in the first and second halves the sequence,
xk and xN

2 +k Write down a general form for the new sequence. How do we
find the minimum and maximum elements now? These two ways of dividing
a sequence into two subsequences are called decimation and partition.

14.2.2 Devise an algorithm for finding the median of N numbers in O(N logN).

14.2.3 The product of two two-digit numbers, ab and cd, can be written ab ∗ cd =
(10 ∗ a + b) ∗ (10 ∗ c + d) = 100ac + 10(ad + bc) + bd. Practice multiplying
two-digit numbers in your head using this rule. Try multiplying a three-digit
number by a two-digit one in similar fashion.

14.2.4 We often deal with complex-valued signals. Such signals can be represented
as vectors in two ways, interleaved


(x1)�(x1),
(x2),�(x2), . . .
(xN ),�(xN )

or separated


(x1)
(x2), . . .
(xN ),�(x1),�(x2), . . .�(xN )

Devise an efficient in-place algorithm changing between interleaved and sep-
arated representations. Efficient implies that each element accessed is moved
immediately to its final location. In-place means here that if extra memory is
used it must be of constant size (independent of N). What is the algorithm’s
complexity?


