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6.12 System Identification—The Easy Case

Assume that someone brings you a signal processing system enclosed in a
black box. The box has two connectors, one marked input and the other
output. Other than these labels there are no identifying marks or documen-
tation, and nothing else is known about what is hidden inside. What can you
learn about such a system? Is there some set of measurements and calcula-
tions that will enable you to accurately predict the system’s output when
an arbitrary input is applied? This task is known as system identification.

You can consider system identification as a kind of game between your-
self and an opponent. The game is played in the following manner. Your
opponent brings you the black box (which may have been specifically fabri-
cated for the purpose of the game). You are given a specified finite amount
of time to experiment with the system. Next your opponent specifies a test
input and asks you for your prediction—were this signal to be applied what
output would result? The test input is now applied and your prediction put
to the test.

Since your opponent is an antagonist you can expect the test input to be
totally unlike any input you have previously tried (after all, you don’t have
time to try every possible input). Your opponent may be trying to trick you
in many ways. Is it possible to win this game?

This game has two levels of play. In this section we will learn how to
play the easy version; in the next section we will make a first attempt at
a strategy for the more difficult level. The easy case is when you are given
complete control over the black box. You are allowed to apply controlled
inputs and observe the resulting output. The difficult case is when you are
not allowed to control the box at all. The box is already hooked up and
operating. You are only allowed to observe the input and output.

The latter case is not only more difficult, it may not even be possible
to pass the prediction test. For instance, you may be unlucky and during
the entire time you observe the system the input may be zero. Or the input
may contain only a single sinusoid and you are asked to predict the output
when the input is a sinusoid of a different frequency. In such cases it is quite
unreasonable to expect to be able to completely identify the hidden system.
Indeed, this case is so much harder than the first that the term system
identification is often reserved for it.

However, even the easy case is far from trivial in general. To see this
consider a system that is not time-invariant. Your opponent knows that
precisely at noon the system will shut down and its output will be zero
thereafter. You are given until 11:59 to observe the system and give your
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prediction a few seconds before noon. Of course when the system is tested
after noon your prediction turns out to be completely wrong! I think you
will agree that the game is only fair if we limit ourselves to the identification
of time-invariant systems.

Your opponent may still have a trick or two left! The system may have
been built to be sensitive to a very specific trigger. For example, for almost
every input signal the box may pass the signal unchanged; but for the trigger
signal the output will be quite different! A signal that is different from the
trigger signal in any way, even only having a slightly different amplitude
or having an infinitesimal amount of additive noise, does not trigger the
mechanism and is passed unchanged. You toil away trying a large variety
of signals and your best prediction is that the system is simply an identity
system. Then your opponent supplies the trigger as the test input and the
system’s output quite astounds you.

The only sensible way to avoid this kind of pitfall is to limit ourselves to
linear systems. Linear systems may still be sensitive to specific signals. For
example, think of a box that contains the identity system and in parallel a
narrow band-pass filter with a strong amplifier. For most signals the output
equals the input, but for signals in the band-pass filter’s range the output is
strongly amplified. However, for linear systems it is not possible to hide the
trigger signal. Changing the amplitude or adding some noise will still allow
triggering to occur, and once the effect is observed you may home in on it.

So the system identification game is really only fair for linear time-
invariant systems, that is, for filters. It doesn’t matter to us whether the
filters are MA, AR, ARMA, or even without memory; that can be deter-
mined from your measurements. Of course since the black box is a real
system, it is of necessity realizable as well, and in particular causal. There-
fore from now on we will assume that the black box contains an unknown
causal filter. If anyone offers to play the game without promising that the
box contains a causal filter, don’t accept the challenge!

Our task in this section is to develop a winning strategy for the easy
case. Let’s assume you are given one hour to examine the box in any way
you wish (short of prying off the top). At the end of precisely one hour
your opponent will reappear, present you with an input signal and ask you
what you believe the box’s response will be. The most straightforward way
of proceeding would be to quickly apply as many different input signals as
you can and to record the corresponding outputs. Then you win the game
if your opponent’s input signal turns out to be essentially one of the inputs
you have checked. Unfortunately, there are very many possible inputs, and
an hour is to short a time to test even a small fraction of them. To economize
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we can exploit the fact that the box contains a linear time-invariant system.
If we have already tried input xn there is no point in trying axn or xn−m,
but this still leaves a tremendous number of signals to check.

Our job can be made more manageable in two different ways, one of
which relies on the time domain description of the input signal, and the
other on its frequency domain representation. The frequency domain ap-
proach is based on Fourier’s theorem that every signal can be written as the
weighted sum (or integral) of basic sinusoids. Assume that you apply to the
unknown system not every possible signal, but only every possible sinusoid.
You store the system’s response to each of these and wait for your opponent
to appear. When presented with the test input you can simply break it down
to its Fourier components, and exploit the filter’s linearity to add the stored
system responses with the appropriate Fourier coefficients.

Now this task of recording the system outputs is not as hard as it appears,
since sinusoids are eigensignals of filters. When a sinusoid is input to a filter
the output is a single sinusoid of the same frequency, only the amplitude
and phase may be different. So you need only record these amplitudes and
phases and use them to predict the system output for the test signal. For
example, suppose the test signal turns out to be the sum of three sinusoids

xn = X1 sin(ω1n) + X2 sin(ω2n) + X3 sin(ω3n)

the responses of which had been measured to be

H1 sin(ω1n + φ1), H2 sin(ω2n + φ2), and H3 sin(ω3n + φ3)

respectively. Then, since the filter is linear, the output is the sum of the
three responses, with the Fourier coefficients.

yn = H1X1 sin(ω1n + φ1) + H2X2 sin(ω2n + φ2) + H3X3 sin(ω3n + φ3)

More generally, any finite duration or periodic test digital signal can be
broken down by the DFT into the sum of a denumerable number of complex
exponentials

xn =
1
N

N−1∑
k=0

Xke
i 2πk

N
n

and the response of the system to each complex exponential is the same
complex exponential multiplied by a number Hk.

Hke
i 2πk

N
n
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Using these Hk we can predict the response to the test signal.

yn =
1
N

N−1∑
k=0

XkHke
i 2πk

N
n

The Hk are in general complex (representing the gains and phase shifts) and
are precisely the elements of the frequency response. A similar decomposition
solves the problem for nonperiodic analog signals, only now we have to test
a nondenumerable set of sinusoids.

The above discussion proves that the frequency response provides a com-
plete description of a filter. Given the entire frequency response (i.e., the
response of the system to all sinusoids), we can always win the game of
predicting the response for an arbitrary input.

The frequency response is obviously a frequency domain quantity; the
duality of time and frequency domains leads us to believe that there should
be a complete description in the time domain as well. There is, and we
previously called it the impulse response. To measure it we excite the system
with a unit impulse (a Dirac delta function δ(t) for analog systems or a unit
impulse signal δn,0 for digital systems) and measure the output as a function
of time (see equation 6.22). For systems without memory there will only be
output for time t = 0, but in general the output will be nonzero over an
entire time interval. A causal system will have its impulse response zero for
times t < 0 but nonzero for t ≥ 0. A system that is time-variant (and hence
not a filter) requires measuring the response to all the SUIs, a quantity
known as the Green’s function.

Like the frequency response, the impulse response may be used to predict
the output of a filter when an arbitrary input is applied. The strategy is
similar to that we developed above, only this time we break down the test
signal in the basis of SUIs (equation (2.26)) rather than using the Fourier
expansion. We need only record the system’s response to each SUI, expand
the input signal in SUIs, and exploit the linearity of the system (as we
have already done in Section 6.5). Unfortunately, the SUIs are not generally
eigensignals of filters, and so the system’s outputs will not be SUIs, and we
need to record the entire output. However, unlike the frequency response
where we needed to observe the system’s output for an infinite number of
basis functions, here we can capitalize on the fact that all SUIs are related by
time shifts. Exploiting the time-invariance property of filters we realize that
after measuring the response of an unknown system to a single SUI (e.g., the
unit impulse at time zero), we may immediately deduce its response to all
SUIs! Hence we need only apply a single input and record a single response
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in order to be able to predict the output of a filter when an arbitrary input
is applied! The set of signals we must test in order to be able to predict
the output of the system to an arbitrary input has been reduced to a single
signal! This is the strength of the impulse response.

The impulse response may be nonzero only over a finite interval of time
but exactly zero for all times outside this interval. In this case we say the
system has a finite impulse response, or more commonly we simply call it
an FIR filter. The MA systems studied in Sections 6.6 and 6.7 are FIR
filters. To see this consider the noncausal three-point averaging system of
equation (6.33).

yn = 1
4xn−1 + 1

2xn + 1
4xn+1

As time advances so does this window of time, always staying centered on
the present. What happens when the input is an impulse? At time n = ±1
we find a 1

4 multiplying the nonzero signal value at the origin, returning 1
4 ;

of course, the n = 0 has maximum output 1
2 . At any other time the output

will be zero simply because the window does not overlap any nonzero input
signal values. The same is the case for any finite combination of input signal
values. Thus all the systems that have the form of equation (6.13), which
we previously called FIR filters, are indeed FIR.

Let’s explicitly calculate the impulse response for the most general causal
moving average filter. Starting from equation (6.30) (but momentarily re-
naming the coefficients) and using the unit impulse as input yields

yn =
L∑

l=0

glδn−L+l,0

= g0δn−L,0 + g1δn−L+1,0 + g2δn−L+2,0 + . . . + gL−1δn−1,0 + gLδn,0

which is nonzero only when n = 0 or n = 1 or . . . or n = L. Furthermore,
when n = 0 the output is precisely h0 = gL, when n = 1 the output is
precisely h1 = gL−1, etc., until hL = g0. Thus the impulse response of
a general MA filter consists exactly of the coefficients that appear in the
moving average sum, but in reverse order!

The impulse response is such an important attribute of a filter that it is
conventional to reverse the definition of the moving average, and define the
FIR filter via the convolution in which the indices run in opposite directions,
as we did in equation (6.13).

It is evident that were we to calculate the impulse response of the nonter-
minating convolution of equation (6.14) it would consist of the coefficients
as well; but in this case the impulse response would never quite become zero.
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If we apply a unit impulse to a system and its output never dies down to
zero, we say that the system is Infinite Impulse Response (IIR). Systems of
the form (6.15), which we previously called IIR filters, can indeed sustain
an impulse response that is nonzero for an infinite amount of time. To see
this consider the simple case

yn = xn + 1
2yn−1

which is of the type of equation (6.15). For negative times n the output is
zero, yn = 0, but at time zero y0 = 1, at time one y1 = 1

2 and thereafter
yn is halved every time. It is obvious that the output at time n is precisely
yn = 2−n, which for large n is extremely small, but never zero.

Suppose we have been handed a black box and measure its impulse
response. Although there may be many systems with this response to the
unit impulse, there will be only one filter that matches, and the coefficients
of equation (6.14) are precisely the impulse response in reverse order. This
means that if we know that the box contains a filter, then measuring the
impulse response is sufficient to uniquely define the system. In particular, we
needn’t measure the frequency response since it is mathematically derivable
from the impulse response.

It is instructive to find this connection between the impulse response
(the time domain description) and the frequency response (the frequency
domain description) of a filter. The frequency response of the nonterminating
convolution system

yn =
∞∑

i=−∞
hixn−i

is found by substituting a sinusoidal input for xn, and for mathematical
convenience we will use a complex sinusoid xn = eiωn. We thus obtain

H(ω) xn = yn =
∞∑

k=−∞
hk eiω(n−k)

=
∞∑

k=−∞
hk e−iωk eiωn (6.53)

= Hk xn

where we identified the Fourier transform of the impulse response hk and
the input signal. We have once again shown that when the convolution
system has a sinusoidal input its output is the same sinusoid multiplied
by a (frequency-dependent) gain. This gain is the frequency response, but
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here we have found the FT of the impulse response; hence the frequency
response and the impulse response are an FT pair. Just as the time and
frequency domain representations of signals are connected by the Fourier
transform, the simplest representations of filters in the time and frequency
domains are related by the FT.

EXERCISES

6.12.1 Find the impulse response for the following systems.
1. yn = xn

2. yn = xn + xn−2 + xn−4

3. yn = xn + 2xn−1 + 3xn−2

4. yn =
∑

i aixn−i

5. yn = xn + yn−1

6. yn = xn + 1
2 (yn−1 + yn−2)

6.12.2 An ideal low-pass filter (i.e., one that passes without change signals under
some frequency but entirely blocks those above it) is unrealizable. Prove this
by arguing that the Fourier transform of a step function is nonzero over the
entire axis and then invoking the connection between frequency response and
impulse response.

6.12.3 When determining the frequency response we needn’t apply each sinusoidal
input separately; sinusoid orthogonality and filter linearity allow us to apply
multiple sinusoids at the same time. This is what is done in probe signals
(cf. exercise 2.6.4). Can we apply all possible sinusoids at the same time and
reduce the number of input signals to one?

6.12.4 Since white noise contains all frequencies with the same amplitude, applying
white noise to the system is somehow equivalent to applying all possible
sinusoids. The white noise response is the response of a system to white
noise. Prove that for linear systems the spectral amplitude of the white noise
response is the amplitude of the frequency response. What about the phase
delay portion of the frequency response?

6.12.5 The fact that the impulse and frequency responses are an FT pair derives
from the general rule that the FT relates convolution and multiplication
FT(x ∗ y) = FT(x)FT(y). Prove this general statement and relate it to the
Wiener-Khintchine theorem.

6.12.6 Donald S. Perfectionist tries to measure the frequency response of a system
by measuring the output power while injecting a slowly sweeping tone of
constant amplitude. Unbeknownst to him the system contains a filter that
passes most frequencies unattenuated, and amplifies a small band of frequen-
cies. However, following the filter is a fast Automatic Gain Control (AGC)
that causes all Donald’s test outputs to have the same amplitude, thus com-
pletely masking the filter. What’s wrong?
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6.13 System Identification—The Hard Case

Returning to our system identification game, assume that your opponent
presents you with a black box that is already connected to an input. We
will assume first that the system is known to be an FIR filter of known
length L+1. If the system is FIR of unknown length we need simply assume
some extremely large L + 1, find the coefficients, and discard all the zero
coefficients above the true length.

The above assumption implies that the system’s output at time n is

yn = a0xn + a1xn−1 + a2xn−2 + · · · + aLxn−L

and your job is to determine these coefficients al by simultaneously observing
the system’s input and output. It is clear that this game is riskier than the
previous one. You may be very unlucky and during the entire time we observe
it the system’s input may be identically zero; or you may be very lucky and
the input may be a unit impulse and we readily derive the impulse response.

Let’s assume that the input signal was zero for some long time (and the
output is consequently zero as well) and then suddenly it is turned on. We’ll
reset our clock to call the time of the first nonzero input time zero (i.e., xn is
identically zero for n < 0, but nonzero at n = 0). According to the defining
equation the first output must be

y0 = a0x0

and since we observe both x0 and y0 we can easily find

a0 =
y0

x0

which is well defined since by definition x0 �= 0. Next, observing the input
and output at time n = 1, we have

y1 = a0x1 + a1x0

which can be solved
a1 =

y1 − a0x1

x0

since everything needed is known, and once again x0 �= 0.
Continuing in this fashion we can express the coefficient an at time n in

terms of x0 . . . xn, y0 . . . yn, and a0 . . . an−1, all of which are known. To see



260 SYSTEMS

this explicitly write the equations

y0 = a0x0

y1 = a0x1 + a1x0

y2 = a0x2 + a1x1 + a2x0 (6.54)
y3 = a0x3 + a1x2 + a2x1 + a3x0

y4 = a0x4 + a1x3 + a2x2 + a3x1 + a4x0

and so on, and note that these can be recursively solved

a0 =
y0

x0

a1 =
y1 − a0x1

x0

a2 =
y2 − a0x2 − a1x1

x0
(6.55)

a3 =
y3 − a0x3 − a1x2 − a2x1

x0

a4 =
y4 − a0x4 − a1x3 − a2x2 − a3x1

x0

one coefficient at a time.
In order to simplify the arithmetic it is worthwhile to use linear algebra

notation. We can write equation (6.54) in matrix form, with the desired
coefficients on the right-hand side




y0

y1

y2
...




=




x0 0 0 0 . . .
x1 x0 0 0 . . .
x2 x1 x0 0 . . .
...

...
...

...
...







a0

a1

a2
...




(6.56)

and identify the matrix containing the input values as being lower triangu-
lar and Toeplitz. The solution of (6.55) is simple due to the matrix being
lower triangular. Finding the lth coefficient requires l multiplications and
subtractions and one division, so that finding all L + 1 coefficients involves
1
2L(L + 1) multiplications and subtractions and L + 1 divisions.

The above solution to the ‘hard’ system identification problem was based
on the assumption that the input signal was exactly zero for n < 0. What
can we do in the common case when we start observing the signals at an
arbitrary time before which the input was not zero? For notational simplicity
let’s assume that the system is known to be FIR with L = 2. Since we
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need to find three coefficients we will need three equations, so we observe
three outputs, yn, yn+1 and yn+2. Now these outputs depend on five inputs,
xn−2, xn−1, xn, xn+1, and xn+2 in the following way

yn = a0xn + a1xn−1 + a2xn−2

yn+1 = a0xn+1 + a1xn + a2xn−1 (6.57)
yn+2 = a0xn+2 + a1xn+1 + a2xn

which in matrix notation can be written



yn

yn+1

yn+2


 =




xn xn−1 xn−2

xn+1 xn xn−1

xn+2 xn+1 xn







a0

a1

a2


 (6.58)

or in other words y = X a, where X is a nonsymmetric Toeplitz matrix. The

solution is obviously a = X−1y but the three-by-three matrix is not lower
triangular, and so its inversion is no longer trivial. For larger number of
coefficients L we have to invert an N = L + 1 square matrix; although most
direct N -by-N matrix inversion algorithms have computational complexity
O(N3), it is possible to invert a general matrix in O(N log2 7) ∼ O(N2.807)
time. Exploiting the special characteristics of Toeplitz matrices reduces the
computational load to O(N2).

What about AR filters?

yn = xn +
M∑

m=1

bmyn−m

Can we similarly find their coefficients in the hard system identification
case? Once again, for notational simplicity we’ll take M = 3. We have three
unknown b coefficients, so we write down three equations,

yn = xn + b1yn−1 + b2yn−2 + b3yn−3

yn+1 = xn+1 + b1yn + b2yn−1 + b3yn−2 (6.59)
yn+2 = xn+2 + b1yn+1 + b2yn + b3yn−1

or in matrix notation



yn

yn+1

yn+2


 =




xn

xn+1

xn+2


 +




yn−1 yn−2 yn−3

yn yn−1 yn−2

yn+1 yn yn−1







b1

b2

b3


 (6.60)
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or simply y = x + Y b. The answer this time is b = Y −1(y − x), which once
again necessitates inverting a nonsymmetric Toeplitz matrix.

Finally, the full ARMA with L = 2 and M = 3

yn =
L∑

l=0

alxn−l +
M∑

m=1

bmyn−m

has six unknowns, and so we need to take six equations.

yn = a0xn + a1xn−1 + a2xn−2 + b1yn−1 + b2yn−2 + b3yn−3

yn+1 = a0xn+1 + a1xn + a2xn−1 + b1yn + b2yn−1 + b3yn−2

yn+2 = a0xn+2 + a1xn+1 + a2xn + b1yn+1 + b2yn + b3yn−1

yn+3 = a0xn+3 + a1xn+2 + a2xn+1 + b1yn+2 + b2yn+1 + b3yn

yn+4 = a0xn+4 + a1xn+3 + a2xn+2 + b1yn+3 + b2yn+2 + b3yn+1

yn+5 = a0xn+5 + a1xn+4 + a2xn+3 + b1yn+4 + b2yn+3 + b3yn+2

This can be written compactly



yn

yn+1

yn+2

yn+3

yn+4

yn+5




=




xn xn−1 xn−2 yn−1 yn−2 yn−3

xn+1 xn xn−1 yn yn−1 yn−2

xn+2 xn+1 xn yn+1 yn yn−1

xn+3 xn+2 xn+1 yn+2 yn+1 yn

xn+4 xn+3 xn+2 yn+3 yn+2 yn+1

xn+5 xn+4 xn+3 yn+4 yn+3 yn+2







a0

a1

a2

b1

b2

b3




(6.61)

and the solution requires inverting a six-by-six nonsymmetric non-Toeplitz
matrix. The ARMA case is thus more computationally demanding than the
pure MA or AR cases.

Up to now we have assumed that we observe xn and yn with no noise
whatsoever. In all practical cases there will be at least some quantization
noise, and most of the time there will be many other sources of additive
noise. Due to this noise we will not get precisely the same answers when
solving equations (6.58), (6.60), or (6.61) for two different times. One rather
obvious tactic is to solve the equations many times and average the result-
ing coefficients. However, the matrix inversion would have to be performed a
very large number of times and the equations (especially (6.60) and (6.61))
often turn out to be rather sensitive to noise. A much more successful tac-
tic is to average before solving the equations, which has the advantages of
providing more stable equations and requiring only a single matrix inversion.
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Let’s demonstrate how this is carried out for the MA case.

yn =
L∑

k=0

akxn−k (6.62)

In order to average we multiply both sides by xn−q and sum over as many
n as we can get our hands on.

∑
n

ynxn−q =
L∑

k=0

ak

∑
n

xn−kxn−q

We define the x autocorrelation and the x-y crosscorrelation (see Chapter 9)

Cx(k) =
∑
n

xnxn−k Cyx(k) =
∑
n

ynxn−k

and note the following obvious symmetry.

Cx(−k) = Cx(k)

The deconvolution equations can now be written simply as

Cyx(q) =
∑
k

akCx(q − k) (6.63)

and are called the Wiener-Hopf equations. For L = 2 the Wiener-Hopf equa-
tions look like this:




Cyx(0)
Cyx(1)
Cyx(2)


 =




Cx(0) Cx(−1) Cx(−2)
Cx(1) Cx(0) Cx(−1)
Cx(2) Cx(1) Cx(0)







a0

a1

a2




and from the aforementioned symmetry we immediately recognize the matrix
as symmetric Toeplitz, a fact that makes them more stable and even faster
to solve.

For a black box containing an AR filter, there is a special case where the
input signal dies out (or perhaps the input happens to be an impulse). Once
the input is zero

yn =
M∑

m=1

bmyn−m

multiplying by yn−q and summing over n we find

∑
n

ynyn−q =
M∑

m=1

bm

∑
n

yn−myn−q
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in which we identify y autocorrelations.

M∑
m=1

Cy(|m − q|)bm = Cy(q) (6.64)

For M = 3 these equations look like this.



Cy(0) Cy(1) Cy(2)
Cy(1) Cy(0) Cy(1)
Cy(2) Cy(1) Cy(0)







b1

b2

b3


 =




Cy(1)
Cy(2)
Cy(3)




These are the celebrated Yule-Walker equations, which will turn up again
in Sections 9.8 and 9.9.

EXERCISES

6.13.1 Write a program that numerically solves equation (6.55) for the coefficients of
a causal MA filter given arbitrary inputs and outputs. Pick such a filter and
generate outputs for a pseudorandom input. Run your program for several
different input sequences and compare the predicted coefficients with the
true ones (e.g., calculate the squared difference). What happens if you try
predicting with too long a filter? Too short a filter? If the input is a sinusoid
instead of pseudorandom?

6.13.2 Repeat the previous exercise for AR filters (i.e., solve equation (6.60)). If the
filter seems to be seriously wrong, try exciting it with a new pseudorandom
input and comparing its output with the output of the intended system.

6.13.3 In the text we assumed that we knew the order L and M . How can we find
the order of the system being identified?

6.13.4 Assume that yn is related to xn by a noncausal MA filter with coefficients
a−M . . . aM . Derive equations for the coefficients in terms of the appropriate
number of inputs and outputs.

6.13.5 In deriving the Wiener-Hopf equations we could have multiplied by yn−q to
get the equations

Cy(q) =
∑

k

hkCxy(q − k)

rather than multiplying by xn−q. Why didn’t we?

6.13.6 In the derivation of the Wiener-Hopf equations we assumed that Cx and Cyx

depend on k but not n. What assumption were we making about the noisy
signals?


