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Abstract

Encrypted Client Hello is plugging information leakage in encrypted packets, in order to thwart
Deep Packet Inspection. Various machine learning mechanisms have been proposed to classify ECH
network connections, but previous research relied on unlimited classification time and mostly dealt
with classifying a small number of classifications in highly constrained settings. We demonstrate
highly accurate classification in no more than one second of a large number of applications for a
real-network dataset, and propose a novel hierarchical mechanism that leverages protocol-specific
knowledge.

1 Introduction

For various reasons, Service Providers need to know characteristics of the network traffic their networks
are forwarding. Perhaps the most obvious reason is security, but visibility, QoS monitoring and assurance
(including congestion mitigation), policy enforcement, differentiated charging, ensuring QoE levels, fault
root cause analysis, user analysis for upsell opportunities, meeting regulatory and compliance require-
ments, and many other use cases are also important. And DPI is conventionally the heart of all systems
that need to know characteristics of Internet traffic.

In the Internet protocol (IP) suite, packets are crafted to be self-describing, comprising a sequence of
packet headers before the user content (e.g., the encoded audio). This structure facilitates standards-
based recursive parsing by the intended recipient, but has the unintended consequence of revealing
information about the packet to potentially malicious parties observing the packet on its way from
source to destination. This situation has been rectified by adding various cryptographic mechanisms,
and it is now often stated that the great majority of Internet traffic is encrypted.

However, this statement regarding the ubiquity of encryption actually only signifies that user content
is encrypted, while Internet packet headers still include unencrypted metadata. This metadata can be
exploited by Deep Packet Inspection (DPI) to identify the application being used.

DPI systems comprise carefully crafted rule sets that map logical combinations of metadata to applica-
tions. During operation, DPI associates packets to connections (sequences of packets between the same
endpoints and sharing identifiers), and parses each individual packet exploiting the self-describing nature
of IP packets to extract per-packet metadata. The DPI system then compares metadata collected from
packets belonging to a connection to application signatures stored in an application signature rule-set.
In this way, state-of-the-art DPI systems are able to recognize thousands of different applications from
dozens of application categories, and accurately classify connections after observing a very small number
of packets.

A notable (but far from the only) example of unencrypted fields are those in the TLS handshake. The
TLS handshake is used by two parties wishing to securely communicate, before they have established
their secure channel, and consists of a Client Hello (CH) message followed by a Server Hello (SH) message.
The CH specifies the cyber suites the client supports, various crypto-related parameters, and optionally
the name of the server (SNI) the client wants to reach (since there may be many virtual servers hosted
behind a single IP address!). Since the cyber suite has not yet been agreed upon, the CH message is
unencrypted, passing SNI and other information in the clear.
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Over the past few years Internet traffic has become more fully encrypted, with sophisticated methods
of encrypting overhead fields, including encrypted Client Hello (ECH) [1]. ECH, as its name implies,
encrypts the TLS CH message using a public key previously obtained.

Encrypting metadata is an effective weapon in the battle against pervasive monitoring and revealing
private information to malicious parties, but as collateral damage, it renders the job of DPI systems
more complicated or even impossible. This directly impacts the aforementioned crucial functions for
which DPI is employed, including security, visibility, QoS monitoring and assurance, etc.

However, even encrypting all packet header fields does not truly remove all distinctive metadata [2].
At least three per-packet characteristics remain. First, the sequence of directions of packets comprising
the connection (e.g., whether from client to server or from server to client) may be indicative of the
service type. For example, video streaming is characterized by a small number of request (GET) packets
from client to server followed by a large number of response packets from server back to the client. On
the other hand, voice or video calls are on the whole symmetric with approximately equal numbers of
packets in each direction. Second, the size of the packets is generally preserved by metadata concealment
techniques, or at most modified by the addition of additional header(s). Thus, even a fully encrypted
connection can be characterized by a tell-tale sequence of packet sizes. For example, video streaming will
consist of a large number of very large response packets from server to client, interspersed with small
’ACK’ packets from client to server acknowledging their receipt. Thirdly, packet timings are generally
not significantly perturbed by metadata obscuration, although they are influenced by the underlying
latencies in the network. From here on we shall use the term PPI (Per Packet Information) to mean the
time series of time, size, and direction of the initial packets in a connection.

There is a rich literature on how to use packet size and timing statistics to classify tens of different
applications from a small number of application categories, and accurately classify connections after
observing a relatively large number of packets.

However, these machine learning methods suffer from at least three drawbacks. First, they necessitate
greater computational resources and consume more energy than DPI methods. Second, in contrast to
DPI which classifies after observing a few packets, obtaining reliable statistics requires observing large
numbers of packets, making these methods unsuitable for many scenarios (e.g., blocking). Third, they
are limited to a small number of applications, as compared to the thousands of applications recognized
by DPI.

Here we describe an alternative machine learning paradigm that avoids these drawbacks. Instead of
statistics we directly use the PPI time series, without needing access to per-packet header field values.
Classifying using only the PPI time series is known as behavioral classification. Only a short PPI time
series, corresponding to a small number of packets, need be used. Furthermore, instead of building a single
large classifier, we build a number of small classifiers, each model classifying a subset of applications.
Since ECH leaves the IP layer visible, only applications that share the same server address are potentially
confused and need to be distinguished using machine learning. These small models require short time
series and have extremely high classification accuracy and recall.

2 Related work

In recent years, researchers have proposed using Machine Learning and Neural Network Learning models
to deal with encrypted traffic classification. However, many of the conventional methods are based on
the byte content of packets of the connection [3, 4, 5, 6]. These models learn patterns in unencrypted
metadata, such as SNI, which will not be relevant once ECH is widely adopted. Another drawback
in current studies is that the classification task was over a very few number of applications (12-19)
[3, 4, 5, 6]. Many articles train and test their models on small limited data sets, old data sets such as
the ISCX VPN/non-VPN dataset [7], or network simulations [8].

The main drawback of current methods of behavioral classification is lengthy classification times. FlowPic
[9], for example, requires 30-second images and degrades with significantly shorter times. Studies that do
attempt to minimize time to classification, tend to classify only a limited number of apps. For example,
FlowFormers [10], which use attention-based Transformers to achieve high accuracy classification within
10 seconds, have only been demonstrated on 5-class problems. A recent paper from Huawei France [11]
uses the PPI of the first 100 packets for TCP connections and 10 packets for UDP ones (unless the entire
connection has fewer packets). Although this paper achieves approximately 90% accuracy for a large
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number (the top 200) of applications, the analysis of 100 packets can be time-consuming, and the paper
does not impose any time limit.

Despite the limitations mentioned above, new avenues for research are emerging with the availability of
more relevant and extensive datasets. For example, the CESNET dataset [12, 13] provides a rich source
of encrypted traffic data that has not been sufficiently embraced by other studies.

To the best of our knowledge, no comprehensive large-scale study has been carried out for a large number
of applications with strongly limited classification time. As compared to the literature our approach
innovates in three areas:

Operational Network Data Training and test data are collected from a large operational mobile
network and labeled using a state-of-the-art commercial DPI system.

Real-Time Applicability Our approach supports immediate actions required in operational networks,
by limiting PPI duration to 1 second.

Domain Knowledge Rather than blindly throwing a large machine learning model at the connection
classification problem, we build a hierarchical structure of smaller classifiers based on clustering of
server IP addresses.

3 The dataset format

Our aim is to identify the application supported by a network connection from among a large number
of distinct applications and to accomplish this identification within stringent constraints — specifically
ensuring that the total time elapsed from the reception of the first packet to the last does not exceed
one second. Hence our data consists of network connections, each comprising connection identifiers (the
so-called 5-tuple of 2 IP addresses, the layer-4 protocol number, and 2 TCP or UDP port numbers), up
to 50 PPIs (but imposing the one-second constraint), and an application identifier (label). In order to
preserve user privacy the IP addresses were anonymized using prefix-preserving CryptoPAN [14].

More precisely, for each connection we have the per-connection fields:

• time of first packet (not used for classification)

• obfuscated source IP address (not used for classification)

• obfuscated destination IP address

• layer 4 protocol number (UDP, TCP, other)

• source port number (not used for classification)

• destination port number (443/8443, 80/8080, other)

• AppID, a numeric value (label) identifying the application

• length of the PPI array (maximum of 50 packets)

and for each packet:

• packet arrival time relative to the initial packet in the connection (in milliseconds)

• packet direction (client-to-server or server-to-client)

• packet payload size (bytes in TCP/UDP payload)

• flag byte (see below).

The flag byte merits special attention. For TCP it contains the eight TCP flags, from which we use the
SYN flag only for classification. For UDP packets it contains the first byte of the UDP payload, which
for QUIC packets contains the 4 unencrypted bits (header format, fixed bit, long packet type field, etc.),
and we utilize only the header format bit.

The AppID label is supplied by a state-of-the-art commercial DPI system, as will be discussed in the
next subsection.
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3.1 Data collection

Our dataset was constructed from live traffic observed in a large mobile network starting in September
2024. We divided the dataset into several subsets, each containing approximately four days of network
traffic including both weekdays and weekends in order to ensure variability in network conditions. The
first subset was designated for model training, while the rest were reserved for model testing, at several
later dates.

Collection was performed by enhancing a commercial real-time Deep Packet Inspection (DPI) system
operating in tap (non-inline) mode on an N*100Gbps bidirectional line. This DPI system is relatively
fine-grained, distinguishing between sub-applications from the same provider. As an example, Facebook
browsing, Facebook video, and Facebook video upload are considered three distinct applications.

The DPI system provides the AppID label based on a rule set which is updated biweekly. This DPI
system has approximately 95% coverage (i.e., it does not recognize about 5% of the connections) and
an extremely low misclassification rate, far surpassing simplistic labeling methods used in much of the
literature, such as relying solely on Server Name Indication (SNI) or server IP addresses.

3.2 The raw data

To enable the reader to better envision our data we will describe the file selected for training. The
connections sampled are selected by hashing the client IP address, thus enabling varying the sampling
rate. The training data file encompassed 195 hours of traffic and contained 313 million raw connections,
implying an average rate of 445 connections per second.

Of these connections

• 146 million (47%) were unencrypted DNS sessions,

• 31 million (10%) were not completely identified by the DPI system.

The fact that half of the connections were DNS is to be expected. Of the insufficiently specified connec-
tions over half were truly unknown applications (to be expected since the DPI coverage is on the order
of 95%) and the rest were only partially identified. In any case such connections are uninteresting for
training purposes and were removed, leaving 136 million nontrivial identified connections (194 per sec).

From previous research (based on querying multiple public DNS resolvers) we know that about 80% of
popular server IP addresses correspond to essentially a single domain name. Here we observe a long tail
of many less popular IP addresses that have a low probability of being hosted alone on an IPv4 address!

This cleaned data set was found to obey the following statistics:

• About 69% of the server IP addresses represent a single application;

– 18% were observed to host two distinct applications;

– 6% were observed to host three distinct applications.

• About 52% of the connections map to a server IP with essentially a single application (where
essentially means that 95% of the connections were identified as belonging to this application);

– 23% map to a server IP address with essentially two distinct applications;

– 15% map to a server IP address with essentially three distinct applications.

So, about half of the sampled connections collected can be mapped to a unique application purely by
the server IP address! Such connections are thus trivially classified and do not require further machine
learning mechanisms.

In addition, while we observe more than 750 distinct applications in the training set, many of these are
too rare to merit separate classification. We thus lumped together all applications that appeared in less
than 0.05% of the connections into a single aggregate label Other.

The test sets were collected using the same setup and underwent identical clean-up, but were amassed
one week, one month, and two months later.

A slightly restricted version of this dataset can be made available for academic research purposes. Inter-
ested parties should contact the corresponding author.
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3.3 Applications

Of the 763 applications reported by the DPI in the training set, 115 passed the popularity criterion,
namely were shared by at least 0.05% of the connections. Applications that attracted at least 1 % of
connections are presented in Table 1.

GoogleServices 14.56 % WhatsApp Transfer 2.08 %
TikTok 10.55 % Google Search 2.01 %
Facebook 6.98 % Advertisements 1.98 %

AppleServices 6.66 % Computing sites 1.76 %
WhatsApp 4.37 % Telegram 1.61 %
Instagram 3.79 % YouTube 1.43 %
Analytics 3.33 % iTunes 1.36 %

Google Play 3.33 % Banners 1.29 %
Other 3.03 % Snapchat 1.27 %
iCloud 2.90 % Generic CDN 1.19 %

YouTube Browsing 2.22 % Facebook Chat 1.14 %

Table 1: Most popular applications with their appearance percentages.

The reader will note that applications are identified by the DPI system in an actioanable manner. For
instance, the most popular application, entitled GoogleServices, is actually an aggregate of multiple
Google-provided services that are mostly transparent to the user, including push notifications, time
services, website optimizations, translation, etc. AppleServices includes similar miscellaneous facilities
related to Apple. Analytics and advertisements are what their name implies from many different servers.

Similarly, over 3% of the connections are labeled Other, which is not a true application but rather
artificial aggregation of all the insufficiently popular ones.

Note that these application popularities are highly dependent on the network being a mobile network,
and fixed networks would have different statistics. For example, Netflix accrues only about 0.1 % in this
cellular network, while it is usually one of the more popular applications in fixed networks. Furthermore,
application popularity is highly dependent on locality.

4 Model Training

We trained two types of classifiers (a Random Forest and a Long Short-Term Memory (LSTM) neural
network) and employed two stratagems (hierarchical and flat). Comparing the resulting four architectures
enables assessing the effectiveness of conventional machine learning approaches versus deep learning
methods, and the value of exploiting domain-specific knowledge.

4.1 Random Forest Classifier

For the Random Forest classifier, it was necessary to transform the variable-length PPI array into fixed-
length feature vectors. We did this by zero-padding to the length of the longest sequence in the dataset,
denoted as Lmax. The PPI components (time, direction, size, and flags) were then separated into
individual feature vectors of length Lmax. The padded feature vectors are then concatenated with per-
connection features (we used IP protocol number, destination port, and PPI length).

The Random Forest classifier was trained using the following 10 trees with a maximum depth of 25 and
a random state of 42 (for reproducibility). The classifier was trained on the entire dataset without a
separate validation split.

4.2 LSTM Neural Network

Since the Random Forest classifier does not fully capture temporal dependencies, we trained an LSTM
neural network capable of processing variable-length sequences and learning temporal patterns inherent
in the packet-level data.

The LSTM-based architecture leverages both per-connection and per-packet information:
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1. per connection Information protocol number, destination port, PPI length

2. per packet information packet time, direction, size, and flags.

The PPI is first passed through a Pack Padded Sequence operation, to prepare it for processing by the
LSTMs layers that handle sequences of varying lengths. The packed sequence is then fed into four stacked
LSTM layers which capture temporal dependencies within the packet sequences. After processing by
the LSTMs, the output is unpacked, and the final hidden state corresponding to the last time step of
each sequence is extracted. This hidden state encapsulates the sequential information from the packet
data.

The extracted features from the LSTM are then concatenated with the connection information, effectively
combining sequential and non-sequential features. This combined feature vector is passed through two
fully connected layers.

The model outputs class scores corresponding to different application IDs.

Per Connection Inputs
(protocol, destPort, ppiLen)

(size: 3)

Per Packet Inputs
(ppi pdt, ppi pd,

ppi flag byte, ppi ps)

Concatenate
(LSTM Output + Scalar Inputs)

(size: 128 + 3 = 131)

Fully Connected Layer 1
(131 → 64)

ReLU Activation

Fully Connected Layer 2
(64 → num classes)

Output
(Class Scores)

LSTM Layer 1
Input size: 4 (Per Packet)

Hidden size: 128

LSTM Layer 2
Input size: 128
Hidden size: 128

LSTM Layer 3
Input size: 128
Hidden size: 128

LSTM Layer 4
Input size: 128
Hidden size: 128

Output from Last Time Step
(size: 128)

Sequence Data
(size per time step: 4)

size: 128

size: 128

size: 128

Output from Last Time Step
(size: 128)

(size: 128)

Combined Features
(size: 131)

Figure 1: Architecture of the LSTM

The complete LSTM model (see Figure 1) has the following architecture:
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• LSTM Input Layer: variable length PPI.

• LSTM network:

– Input size: 4 (number of sequence features) times PPI length

– Number of LSTM layers: 4

– Number of LSTM units per layer: 128 units

– Output size: 128

• Fully Connected Layers:

– Input Layer per connection features (protocol number, destination port, PPI length).

– concatenation layer

– fully connected feedforward layer

∗ Input size: 131 (128 from LSTM output + 3 scalar features)

∗ Output size: 64

– ReLU activation layer (size: 64)

– fully connected feedforward layer

∗ Input size: 64

∗ Output size: C (the number of application classes)

The model was trained using the following settings:

• Loss Function: Cross-Entropy Loss, suitable for multi-class classification.

• Optimizer: Adam optimizer with an initial learning rate of 1× 10−3.

• Learning Rate Scheduler: StepLR scheduler reduces the learning rate by a factor of 0.5 every
5 epochs to facilitate convergence.

• Epochs: 20 epochs, determined empirically to balance training time and performance.

• Batch Size: 128 samples per batch.

• Regularization: Gradient clipping with a maximum norm of 5 to prevent exploding gradients.

Model performance was monitored using weighted precision, recall, and F1 metrics on a small validation
set.

The model was trained using GPU acceleration.

5 Hierarchical Classification

In the current literature, the predominant method for classifying encrypted network traffic involves
constructing a single, monolithic model that attempts to identify all applications. We’ll call this the flat
classification method. For example, in the previously cited Huawei study [11], a single large model is
developed to categorize a multitude of applications by analyzing encrypted packet characteristics.

In contrast to the flat method, we introduce a hierarchical approach that incorporates knowledge of the
server IP address, which remains unencrypted under ECH. We group network traffic based on server IP
address and build unique models that distinguish between the relatively small number of applications
specific to each group. This allows integrating domain-specific knowledge directly into the classification
process. Instead of relying on a single monolithic model to classify all applications, we construct many
smaller specialized models, each focusing on traffic associated with specific server IP addresses. Not
only is it easier and faster to train these smaller models, but classification errors are less severe as
misclassification is only possible between related applications.

The first step in our hierarchy singles out server IP addresses that were identified in the training set as
hosting essentially a single application. A server is deemed to host essentially a single application if the
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proportion of training connection associated with its dominant application exceeds 95%. For such server
IP addresses, classification is trivial.

The next level of our hierarchy locates sets of popular server IP addresses that host multiple applications.
We may partition such server IP addresses into distinct groups that share the same applications, using
one of three methods:

1. ASN-based grouping

2. application-based grouping

3. application distribution clustering

Connections with server IP addresses not in a defined group are classified using a flat model.

ASN-based grouping maps server IP addresses to their Autonomous System Numbers (ASNs) to leverage
the fact that servers within the same Autonomous System are likely to host applications related to the
entity owning that AS. This is especially the case where the AS belongs to a gorilla, that is, one of
the dominant technology giants such as Google, Meta, Amazon, Apple, or Microsoft. Thus, a server IP
address belonging to Google’s ASN 15169, might host GoogleServices, Google Search, Gmail, Google
Maps, Youtube, etc., but would not support Facebook, Instagram, or WhatsApp, which are hosted in
Meta’s ASN 32934. The disadvantage of this grouping is that a gorilla may subdivide its IP address
resources, not hosting all services on all of its addresses.

Application-based grouping partitions servers based on a particular application constituting a signifi-
cant portion of their activity. All server IP addresses with the same dominant applications are grouped
together. Application distribution clustering compares the probability distributions and performs clus-
tering based on the distribution similarity. These grouping methods will be more fully explained in
a future publication. The overall performance did not significantly differ depending on the grouping
method.

Here we will report on ASN-based grouping, wherein we map popular server IP addresses to their
ASN using publicly available information. In our training set we found 11 major ASN groups (each
encompassing over 1% of the connections) with between 10 and 30 applications per group. As expected,
ASN groups included Google, Apple, Amazon, Microsoft, Akamai, Cloudflare, and several CDNs. For
each ASN group we train a separate classification model that classifies only applications found in that
group. Connections belonging to server IP addresses that are not in a major ASN group are classified
using a flat model trained on the complete dataset comprising all applications.

Start

Model Selection

Model 1

IP Group 1

Model 2

IP Group 2

Model 3

IP Group 3

... Flat Model

Unknown IP

Classification Report

Essentially Single AppId

Figure 2: Hierarchical Decision Flow
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6 Results

Here compare our hierarchical classification scheme to a flat classifier that does not exploit server IP
address at all. We have additionally explored the flat model with server IP address as input; although
this improved the model’s accuracy, its overall performance was still significantly inferior to that of our
proposed hierarchical method.

First, two classifiers, a Random Forest classifier and a deep LSTM, were trained with up to 50 pack-
ets per connection, using the flat model and our hierarchical model (with ASN-based grouping). The
performance on a test set collected a week after the training are presented in Table 2.

In order to reduce the time to classification, we explored the same methods but with a stricter limit of
no more than 10 packets per connection. The performance metrics suffered, but not very significantly,
as shown in Table 3.

In a rapidly evolving network landscape, models trained on data from a specific time frame may expe-
rience performance degradation when applied to data collected at a later date. Factors such as updates
to existing services and changes in user behavior can alter the statistical properties of network traffic,
leading to distributional drift.

To assess the time stability of model we conducted a drift evaluation using two additional datasets
collected a month later and two months later. Results are presented in Tables 4, 5, 6 and 7. We
observe that our hierarchical model maintained close to 90% accuracy, recall, and F1-score, even after
two months. Assessment of geographical stability will be reported elsewhere.

7 Discussion

The introduction of ECH strongly impacts DPI systems, and requires the introduction of more so-
phisticated machine learning techniques. Previous research has mostly ignored the real-world issues
of time-to-classification (allowing 30 seconds or a minute before classifying) and the large number of
potential applications (typically assuming tens of applications suffice).

We have presented what we believe to be the first research into replacing DPI in real-world settings to
counter the influence of ECH. We find that, based solely on packet size, direction and time of arrival, we
can classify over 100 applications in less than 1 second, with accuracy of approximately 90%. Indeed,
even a mere ten packets suffice for high-accuracy classification. We find little advantage to using deep
LSTM classifiers as compared to legacy Random Forest ones.

We furthermore proposed a hierarchical model that integrates domain-specific knowledge through the
utilization of server IP addresses, which are not hidden in the ECH scenario. This hierarchical approach
not only reduces computational complexity of training and inference, but noticeably improves perfor-
mance as compared to the flat model. Furthermore, any residual errors are limited to within server IP
groups, which are less impactful in practice.

Our methods demonstrate robust generalization when tested on a real-world mobile network, and do not
degrade significantly after a month or even two months have gone by.
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Table 2: Performance Comparison with up to 50 PPIs

Classification Method Model Precision Recall F1 Score

Flat Model Random Forest 88.42 88.26 88.07
LSTM 90.06 89.93 89.84

ASN-Based Grouping Random Forest 93.58 93.54 93.42
LSTM 94.68 94.64 94.57

Table 3: Performance Comparison with up to 10 PPIs

Classification Method Model Precision Recall F1 Score

Flat Model Random Forest 88.15 88.11 87.92
LSTM 86.34 86.35 86.05

ASN-Based Grouping Random Forest 92.71 92.71 92.58
LSTM 92.15 92.12 91.97

Table 4: Performance Comparison with up to 50 PPIs one month after training

Classification Method Model Precision Recall F1 Score

Flat Model Random Forest 86.62 86.21 85.95
LSTM 88.16 87.81 87.64

ASN-Based Grouping Random Forest 92.16 92.01 91.85
LSTM 93.13 93.05 92.93

Table 5: Performance Comparison with up to 10 PPIs one month after training

Classification Method Model Precision Recall F1 Score

Flat Model Random Forest 86.21 86.00 85.70
LSTM 84.19 84.11 83.65

ASN-Based Grouping Random Forest 91.10 91.05 90.85
LSTM 90.25 90.23 89.98

Table 6: Performance Comparison with up to 50 PPIs two months after model training

Classification Method Model Precision Recall F1 Score

Flat Model Random Forest 82.03 80.79 80.38
LSTM 83.19 82.22 81.90

ASN-Based Grouping Random Forest 90.48 90.31 90.06
LSTM 91.27 91.17 90.98

Table 7: Performance Comparison with up to 10 PPIs two months after training

Classification Method Model Precision Recall F1 Score

Flat Model Random Forest 81.43 80.34 79.95
LSTM 79.25 78.15 77.59

ASN-Based Grouping Random Forest 89.63 89.58 89.35
LSTM 88.75 88.69 88.43
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