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Abstract

Feedforward neural networks with n binary inputs, a single layer of threshold units,
and a single binary output are capable of implementing all 22

n

dichotomies of the set
of all possible binary n-vectors. We concentrate on the dichotomization capacity, ie.
the total number of dichotomies which specific architectures can realize. The number
of hidden units required to produce all possible dichotomies is of particular interest.
We consider these questions for both perceptrons and single hidden layer networks
of biased or unbiased neurons, and continuous (real) valued or Ising (binary valued)
couplings. We give some analytic results, and obtain exact values for small systems
based on exhaustive enumeration. The latter is made feasible through the exploitation
of symmetries in order to reduce the number of distinct networks in a given architecture.

1 Dichotomies of All Binary Vectors

In this paper we will consider vectors of n binary elements {Si}i=1,...,n, Si = ±1, which can
be pictured as the corners of an n dimensional hypercube. We wish to partition all possible
such binary vectors into one of two classes, which we label ±1 as well. Such a boolean func-
tion is usually called a dichotomy in pattern recognition terminology, a switching function

in the older logic design literature, and the set of positively classified vectors is a concept

in the scope of modern learning theory. Since there are 2n distinct vectors to be arbitrarily
classified, the total number of dichotomies is 22

n

. For example, for n = 1 there are two line
interval vertices −1 and +1 and these can be dichotomized in 22 = 4 ways, namely 1) both
negatively classified (the empty concept), 2) −1 → −1 and +1 → +1, 3) −1 → +1 and
+1 → −1, and 4) both positively classified. Similarly for n = 2 there are four corners to
the square and these can be dichotomized in 24 = 16 ways.
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We will always consider the different vector elements to be distinguishable, although in
logic design much attention is paid to the case of dichotomies constrained to be symmetric

functions of the Si – ie. functions of S =
∑n

i=1 Si. Note that S changes in steps of two
and that −n < S < n; thus it can take only n + 1 distinct values. We conclude that only

2n+1 of the possible 22
n

dichotomies are symmetric in this sense. The parity function, that

returns +1 when the number of positive input units is odd, is symmetric in this sense.

We are more interested in the special case of dichotomies in which exactly one half

of the 2n vectors are positively classified and one half negatively classified. We call these

demichotomies and there are
(

2
n

2n−1

)
possible. For n = 1, two out of the four aforemen-

tioned dichotomies are demichotomies; for n = 2, 3 there are 6 out of 16 and 70 out of 256

respectively. For large n, using Stirling’s approximation, one can easily show that there

are approximately
√

2

π

(
22

n
−

n

2

)
demichotomies. There are special demichotomies for which

if an input I is positively classified then −I must be negatively classified. Both n = 1
demichotomies are of this sort, while for n = 2 four are and two (the exclusive or xor and
its complement) are not. We call this type of demichotomy a hemichotomy. Since we can
arbitrarily label half of the vector elements, the other half then being determined, there are
exactly 22

n−1

hemichotomies. For example, when n = 3, only 16 of the 70 demichotomies
and 256 dichotomies are hemichotomies.

2 Feedforward Neural Networks

One device which explicitly computes a dichotomy is the layered feedforward network of
hard limiting neurons. This device has nI binary input units Ij, zero or more intermediate
(hidden) layers of binary units and a single binary output unit O. In order to realize a
dichotomy we select the proper input layer size nI = n, and require that when one clamps
the input units to any binary vector Ij = Sj, the output unit O must return the label
appropriate to that vector.

We will restrict ourselves here to networks having no hidden layers (perceptrons) or with
a single layer of nH > 2 hidden units fully connected above and below and with no direct

connections from input to output (two-layer network). The disallowed case of one hidden
unit nH = 1, is exactly equivalent to the perceptron. For the perceptron, the output is
calculated by

O = sgn(
∑

j

JOIjIj − θO) (1)
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while for the two-layer network

Hi = sgn(
∑

j

JHiIjIj − θHi
)

O = sgn(
∑

i

JOHi
Hi − θO) . (2)

We will call the J values couplings although the biological term is synaptic efficacies. The
θ terms will be denoted biases, although physicists usually refer to them as thresholds, the
term ‘bias’ being reserved in the physics literature (eg. [2, 4]) for the relative excess of
positives over negatives in the input pattern.

One may wish to consider unbiased networks, ie. ones with θHi
= θO = 0, or to allow

the biases to take arbitrary values. For unbiased networks, the above equations imply

Ij −→ −Ij =⇒ O −→ −O (3)

and thus only hemichotomies can be realized. In the most general instance the couplings
JOIj , JHiIj , and JOHi

are continuous, ie. can take arbitrary positive or negative real values;
however the Ising case is of interest, wherein they are restricted to ±1. We have thus defined
eight different special cases, namely :

1. the unbiased Ising perceptron (see section 8)

2. the biased Ising perceptron (see section 9)

3. the unbiased continuous perceptron (see section 7)

4. the biased continuous perceptron (see section 6)

5. the unbiased Ising two-layer network (see section 12)

6. the biased Ising two-layer network (see section 13)

7. the unbiased continuous two-layer network (see section 14)

8. the biased continuous two-layer network (see section 15).

In the course of our discussion we will also treat several other cases.
A dichotomy which can be realized by a perceptron is called linearly separable since

in this case the positively labeled hypercube corners can be separated from the negatively
labeled ones by a single n−1 dimensional hyperplane. In the old literature such a switching
function was called a (linear) threshold function. For n = 1 all four dichotomies are trivially
separated by a point; for n = 2 only 14 of the 16 dichotomies of the square are separable by
a line, the two exceptions being, once again, the exclusive or and its complement. We will
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see later on that for n = 3 exactly 104 out of the 256 dichotomies are linearly separable.
A hemichotomy which is linearly separable can always be separated by a hyperplane which
passes through the origin. A dichotomy which is not linearly separable can always be
implemented as the union of areas bounded by hyperplanes, ie. by a biased feedforward
network with a single hidden layer. This is the rationale for our limiting ourselves to the
discussion of single hidden layer networks.

3 Dichotomization capacity

Many studies of the performance of neural networks [2, 3, 4, 8, 13] have dealt with the
question of memory capacity, that is the number of randomly chosen binary vectors which
one can require to be positively classified. This approach is most appropriate when the
network is to be used as an associative memory, as in the case of the Hopfield model
[5]. In such an application only the recognition of stored memory patterns (with perhaps
some degree of error correction) is required, while many spurious memories may exist.
Feedforward networks are more commonly used as pattern classifiers, and in this application
the cost of a ‘false positive’ reaction may be comparable to that of a ‘rejection’.

We will thus address another question — given an architecture (by which we mean the
constraints on the couplings and biases and the number of hidden units), how many distinct
dichotomies can be realized? We call this number the dichotomization capacity of the
architecture, and denote it by D(n), using various sub- and superscripts to distinguish
specific network architectures. A network which can realize all possible dichotomies, ie. one
for which D(n) = 22

n

, is called a universal realizor. In learning theory terminology one
says that such a network ‘shatters’ the set of hypercube vertices. We will be particularly
interested in the minimum number of hidden units nH required for a two-layer network to
be such a universal realizor.

The question of the number of realizable dichotomies is interesting for a somewhat
different reason. In real world problems the dimension of the input space tends to be large,
and specification of the required output for all possible input vectors is impractical. For
such cases we specify the output for only a small number of representative input vectors (the
training set) but desire that the network produce the required output for all possible inputs
(generalization). In general, when the dichotomization capacity is large, the probability of
proper generalization is small. Thus for large input dimension, one should strive to use the
network with the smallest dichotomization capacity, which is still capable of realizing the
training set.
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4 Bounds and Exhaustive Enumeration

It may be useful to have upper bounds to the dichotomization capacity. The most general
bound is the enumeration bound which results from noting that the number of dichotomies
realized can not exceed the total number T of distinct networks for the given architecture.
In general this bound will not be very tight since many different networks may produce the
same dichotomy. We will see that this bound is always definable, even when the couplings
take on continuous values, although at first sight the number of networks would then seem to
be infinite. A more popular bound, generally applicable to networks with discrete couplings,
is the so called information theoretic bound [3, 4] which results from requiring the amount
of information (in bits) extracted from a network not to exceed the information put into it.
Finally, since surfaces separating the classes are hyperplanes, one may be able to employ
hyperplane counting arguments [1] to bound the number of attainable dichotomies, although
these arguments are most useful for perceptrons.

In most cases we will find the bounds to be extremely loose, and will desire to find the
dichotomization capacity exactly. For small enough systems, this can be done by exhaustive

enumeration, that is, by explicitly producing all T distinct networks, inputing all 2n possible
patterns, and counting all the dichotomies thus formed. Since the number of networks and
the number of input patterns are both exponential in n, this plan can only be carried out for
extremely small systems, for example n < 5. Even substantial increase of computer power
will not appreciably increase the pattern lengths amenable to this treatment. However, the
proper exploitation of network symmetries, in order to reduce the number T of networks
that need be checked, can significantly reduce computer time (in addition to sharpening the
enumeration bound). This is perhaps the most significant contribution of this work.

5 Obtainable dichotomization capacities

Before dealing with the specific cases we ask whether all the values 1 . . . 22
n

are valid di-
chotomization capacities for some feedforward network architecture? We would perhaps
think not, since an architecture which realizes a given pattern set will necessarily realize
many others related to it by symmetry. The specific symmetry we have in mind is that of
permuting the input neurons. For example, an architecture which can realize the dichotomy
in which the only positive pattern has the first input neuron 1 and all the rest −1, can as
easily implement a dichotomy for which any single input neuron is 1 in the positive pattern.
Indeed, the number of positive inputs is obviously invariant under permutation, and thus
the n pattern sets with a single positive input, the

(
n

2

)
= n(n−1)

2 with two positive inputs,
etc. are all realizable together.

The characteristic of being necessarily realizable by the same architecture is an equiva-
lence relation, which partitions the 22

n

possible functions into mutually exclusive permuta-
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tion sets. For a network with only a single input no permutations are possible, and thus all
22

1

= 4 functions are separate permutation sets. For more inputs there will be permutation
sets with between 1 and n! elements. The first few cases are :

n = 1 22
1

= 4 ∗ 1

n = 2 22
2

= 8 ∗ 1 + 4 ∗ 2

n = 3 22
3

= 16 ∗ 1 + 48 ∗ 3 + 16 ∗ 6 (4)

n = 4 22
4

= 32 ∗ 1 + 32 ∗ 3 + 224 ∗ 4 + 224 ∗ 6 + 1680 ∗ 12 + 1792 ∗ 24

n = 5 22
5

= 64 ∗ 1 + 960 ∗ 5 + 4032 ∗ 10 + 96 ∗ 12 + 3072 ∗ 15 + 29, 760 ∗ 20

+126, 016 ∗ 30 + 2, 830, 176 ∗ 60 + 34, 339, 072 ∗ 120 .

To understand the coefficient of the first term, we consider once again the invariance of
the number of positive inputs. Thus a dichotomy wherein exactly all patterns with a single
positive input are labeled +1 is a singleton permutation set, as is that which consists of all
patterns with exactly two positive inputs, or three, or any number up to n. In addition
the dichotomies consisting of all single positive patterns and all double ones, or all singles
and triples, etc. are singletons. More generally all singletons can be constructed from
combinations of all the 0 . . . n positive input patterns, and there are thus 2n+1 such.

The other terms are more difficult to understand, being more complex mixtures. For
example, let us consider dichotomies with two positively labeled input patterns, one with a
single positive input unit and the other with two positive inputs. There are(

n

1

)(
n

2

)
=

n2(n− 1)

2

such dichotomies, but one must distinguish two cases. There may be a positive input unit in
common (there are 2

(
n

2

)
such), or there may not, in which case the size of the permutation

set is (
n

2

)(
n− 2

1

)
=

n(n− 1)(n− 2)

2
+ n(n− 1) .

As a second example, let us take a three positive input and a two positive input patterns.
Now there are three cases, with two, one or no positive inputs in common. The sizes of the
permutation sets are determined from(

n

3

)(
n

2

)
=

(
n

3

)(
3

2

)
+

(
n

3

)(
n− 3

2

)
+

(
n

3

)(
3

1

)(
n− 3

1

)
.

We can proceed to generate permutation sets in this fashion, but the complexity increases
exponentially in n. What one does discover from such calculations, as we indeed see in the
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above special cases, is that as n increases, more and more of the weight goes into the largest
(n!) term.

We now return to the question with which we opened this section. An architecture
realizes the union of permutation sets. For there to be disallowed dichotomization capacities,
we must have a gap in the sums of the coefficients of the permutation set expansions, such
as those of equation (4). For n < 5 such gaps are not possible, however we have seen that

there are only 2n+1 singletons and that for large n, most of the other permutation sets are
maximal. For large enough n, we have n! > 2n+1, and thus one can not rule out such gaps.

6 The biased continuous perceptron

We start with this case since it has been the most seriously considered to date. In the
terminology of the older literature we ask, how many of the 22

n

switching functions are
threshold functions? In more modern form we ask, how many dichotomies are linearly
separable? We denote this number simply D(n) (without subscripts).

Cover [1] produced a bound C(n), based on hyperplane counting arguments first put
forth by Steiner [15] in 1826 for two and three dimensions, and later extended to an arbitrary
number of dimensions by Schläfli [12]. While the two dimensional case is trivial, the three
dimensional one has all the elements of the general case, and thus the main result is often
referred to as Steiner’s theorem. Subsequently this same theorem and variations have been
found many times. Cover’s bound states that :

D(n) < C(n) = 2
n∑
k=0

(
2n − 1

k

)
(5)

This is, however, only an upper bound, holding exactly only when the points to be
dichotomized are in general position, ie. when no subset of n+ 1 points lie on an n− 1 or
lower dimensional hyperplane. This is highly probable for points randomly chosen in space,
however we are interested in the highly nonrandom case of all the vertices of the hypercube.
For n = 2 there are indeed no three points of the square on a single line, and so the Cover
bound is attained. For n = 3 however, 12 of the 70 four point subsets of the cube lie on
a plane, and thus the cube vertices are not in general position. We indeed find that only
104 dichotomies are linearly separable, strictly fewer than the 128 of Cover’s prediction.
Similarly, out of the 4368 five point subsets of the tesseract’s vertices, 1360 are on a three
dimensional hyperplane; for n = 5 the 906,192 six point subsets divide up as follows : 8480
on a 3-plane, 341,520 on a 4-plane, and 556,192 do not fall on a lower dimensional plane.
For large n, the probability of general position of n+ 1 randomly chosen hypercube points
declines, and Cover’s bound becomes extremely loose, as one can observe from the third
column of table 1.
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Cover’s bound is not attained for points not in general position due to degeneracy of
space partitions which the hyperplanes should have formed. An exact method of taking this
degeneracy into account was developed by Winder [17], however the calculations involved in
its evaluation (which we used in deriving the numbers of subsets in the previous paragraph)
become quite involved for high dimension.

A lower bound has been derived based on the observation [14] that for any linearly
separable dichotomy of n variables, we can create (2n + 1) distinct linearly separable di-
chotomies of n + 1 variables by a simple geometric procedure. The procedure consists of
cloning the original n dimensional hypercube and considering the two hypercubes to be the
Ij = ±1 projections of a n + 1 dimensional hypercube. On the clone one then places a
hyperplane parallel to the separating hyperplane, and translates it (keeping it parallel to
the first), forming a new dichotomy after crossing each of the 2n vertices. We find that
D(n+ 1) > (2n + 1)D(n) and since D(1) = 4, we obtain

2
1

2
[n2−n+4]

< 4
n−1∏

k=1

(2k + 1) < D(n) . (6)

One can improve the constant in the leftmost exponent [18] by commencing the product at

some higher n, and with little further work [10] for n > 8 can show D(n) > 2
1

2
(n2+n)+8.

Thus, for large enough n

2
1

2
n2
< 2

1

2
[n2+n]+8 < D(n) < 2

n∑

k=0

(
2n − 1

k

)
< 2n

2

, (7)

so that asymptotically

D(n) ∼ 2γn
2

with
1

2
< γ =

log2D(n)

n2
< 1 . (8)

Winder [16] and Muroga with co-workers [9, 10, 11] have determined D(n) numerically
for small n, (see table 1). In principle this involves generating all the possible dichotomies
and checking for linear separability, eg. using linear programming. However, considerable
ingenuity has been employed in order to reduce the number of checks which must actually
be performed. An alternative approach relies upon Winder’s previously mentioned theorem
[17]. Although considerable effort was put into these compilations, the n values amenable to
computer work are still too small to allow observation of asymptotic tendencies. For n = 8
the value derived for γ from equation (8) seems to be oscillating in the vicinity of γ ≈ 2

3
,

although some speculate that γ should approach one. Even were one to assume γ = 1,
for large n equation (8) represents only a vanishingly small fraction of the total number of
dichotomies 22

n

.
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n C(n) D(n) D(n)
C(n) γ(n)

1 4 4 1 2.0

2 14 14 1 0.952

3 128 104 0.8125 0.744

4 3882 1882 0.4848 0.680

5 412,736 94,572 0.2291 0.661

6 151,223,522 15,028,134 0.0994 0.662

7 189,581,406,208 8,378,070,864 0.0442 0.673

8 820,064,805,806,914 17,561,539,552,946 0.0214 0.687

Table 1: Known dichotomization capacities for continuous perceptrons D(n) (from [9, 10,
11, 16]), with Cover’s bound C(n), the actual capcity to Cover bound ratio and the derived
value of the asymptotic exponent γ(n).

7 The unbiased continuous perceptron

The unbiased continuous perceptron, like all unbiased networks, can only realize hemi-
chotomies. These perceptrons were called self-dual threshold functions in the old litera-
ture. The dual of a boolean function of n boolean variables f (x1, x2, . . . , xn) is defined
to be −f(−x1,−x2, . . . ,−xn), and thus the term ‘self-dual’ means f(x1, x2, . . . , xn) =
−f(−x1,−x2, . . . ,−xn), which is exactly (3).

The unbiased case has lately been the subject of much interest. In the biologically
inspired ‘Hopfield model’ [5] each neuron functions as an unbiased continuous perceptron
receiving input from all the others. The memory capacity for this case has been studied
extensively by Gardner [2], and that pioneering work triggered the interest of physicists in
the question of neural network capacity.

We will denote the dichotomization capacity for unbiased cases by appending a super-
scripted asterisk, and so D∗(n) stands for the capacity desired here. Unbiased networks,
lacking the degrees of freedom of the biases, have severely reduced capacity as compared to
similar but biased networks. In the present case, the bias is exactly equivalent to an input
to output coupling, which leads to

D∗(n) = D(n− 1) ∼ 2γ(n−1)2 . (9)

The formal proof of the left hand equality proceeds along the following lines. Given any
biased perceptron in n−1 variables, one can build an unbiased perceptron in n variables by
substituting JOInIn for θO with In = −1. Two such distinct biased perceptrons must differ
in the classification of at least one input (n−1)-vector, and in this case the two corresponding
unbiased perceptrons will also disagree on the corresponding augmented input vector; and
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we have thus shown that D∗(n) > D(n − 1). Conversely, we need to consider two distinct
unbiased perceptrons, ie. perceptrons which differ regarding some n-vector. However, since
these perceptrons only implement hemichotomies, we need only require different outputs
for input vectors with In = −1. For this case the corresponding biased perceptrons will
also differ, and thus D(n− 1) > D∗(n) as well. The asymptotic behavior now follows from

equation (8).

8 The unbiased Ising perceptron

The unbiased Ising perceptron is in a sense the simplest of the eight cases we consider, in
that it requires only n bits for its specification. The memory capacity has recently been
studied for this case as well [6, 4].

There is a subtle problem in definitions (1) and (2), peculiar to unbiased Ising (or, more
generally, discrete) cases, due to the sign function being undefined for a zero argument. In
order to alleviate this problem we will require nI (and likewise nH for the two-layer case)
to be odd.

We will denote the dichotomization capacity for Ising networks by appending a sub-
scripted ±1, and thus this section deals with D∗

±1(n). From simple algebraic or geometric
arguments we can show that

D∗

±1(n) = 2n . (10)

The argument is that there are 2nI possible JOIj , each corresponding to a hypercube vertex
and each realizing a distinct dichotomy. This follows algebraically from the unbiased version
of equation (1) since the set of inputs giving positive output consists of all those vertices
within Hamming distance nI/2 of the chosen one. This set necessarily changes when the
chosen vector is replaced. Geometrically, we see that the separating hyperplane contains
the origin and is perpendicular to the vector from there to the chosen vertex. Choosing
a new vertex rotates the plane through hypercube vertices and thus produces a distinct
dichotomy.

Due to the fact that every distinct network produces a different dichotomy, the enumer-
ation bound is attained. We see that although the unbiased Ising perceptron has extremely
limited capacity, it functions optimally given its architectural constraints. This is in conso-
nance with the finding [4], that the unbiased Ising perceptron is the most efficient from the
memory capacity point of view.

9 The biased Ising perceptron

From comparison with equation (9) one might expect D±1(n) to equal D
∗
±1(n+1) = 2n+1 =

2 · 2n. We may obtain higher capacity if the bias is allowed dynamic range greater than
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±1. However, we have not considered the quantization of the bias term, and have implicitly
taken it to be continuous valued. We will now show that there are a finite number of distinct
bias values, even if a priori we make no discreteness assumptions. The sum in equation (1)
can only take the nI + 1 values between −nI and +nI in steps of two

∑

j

JOIjIj = −nI ,−nI + 2,−nI + 4, · · · , nI − 4, nI − 2, nI . (11)

Thus ‘different’ biases, which are between the same two values of the sum, result in the same
partitioning of the input space, and are thus equivalent. Without limiting generality we can
chose to use the nI +2 integral values −nI − 1,−nI +1,−nI +3, · · · , nI − 3, nI − 1, nI +1;
moreover, the values −nI − 1 and nI +1 give the same dichotomies for all JOIj values (the
totally positive and totally negative ones respectively) , and thus should be enumerated
separately. Thus we chose the nI bias values

θO = −nI + 1,−nI + 3, · · · , nI − 3, nI − 1 . (12)

Building on the arguments of the previous section, we find that

D±1(n) = 2nn+ 2 , (13)

since for each of the 2n unbiased perceptrons, we can supply n different biases, and then
we must count the final two as remarked above. Note that once again the enumeration
bound is attained, since each perceptron counted contributes a distinct dichotomy. It is
also interesting to observe that the ratio between the capacity of equation (13) and that of
equation (10) is asymptotically linear in n, and not exponential as it is for the continuous
valued case. This means that bias is much less successful in enlarging the capacity in this
case. This is due to the relatively few distinct values the bias can take.

10 Other constraints

Comparing the results of sections 7 and 8, we see a most interesting difference in behav-
ior between the the Ising perceptron D∗

±1(n) = 2n and the continuous valued perceptron

D∗(n) = 2γn
2

. For the memory capacity, the functional form is the same, namely P = αN ,
with only the coefficients differing, α = 0.832 for the Ising case [6, 4], and α = 2 for the con-
tinuous case [2]. Gutfreund and Stein [4] have studied the transition between Ising and con-
tinuous cases by allowing successively more discrete values JOIj = 0,± 1

L
,± 2

L
, · · · ,±1. For

the simplest case, the diluted Ising perceptron, there are three discrete values JOIj = 0,±1
and they found α = 1.174; for the asymmetric constraint JOIj = 0, 1 the result is α = 0.59.

This diluted Ising case can be studied here as well. The dichotomization capacity of the
unbiased diluted Ising perceptron is given by

D∗

0,±1(n) =
1

2
(3n − (−1)n) (14)
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and that of the biased version by

D0,±1(n) = 3nn− 3n−1 + 2 = 2
(
3n−1n+ 1

)
. (15)

(Once again the biased to unbiased ratio is linear in n.) We will derive the result for the
unbiased case, leaving the extension to the biased case to the reader. We require the total
number of non-zero couplings to be odd, and note that as for the Ising case the enumeration
bound will be attained. This follows from the fact that inverting a non-zero coupling will
change an Ising perceptron, while changing which couplings are zero, causes previously
uninfluential inputs to effect the output. We thus conclude that

D∗

0,±1(n) =
n∑

z=1
z odd

(
n

z

)
2z (16)

Now, from the binomial theorem

n∑
z=0

(
n

z

)
(±2)z = (1± 2)n

subtracting the negative case from the positive we obtain (14).
We can endeavor to extrapolate these results further. With two possible coupling values

the leading term is 2n (2nn with threshold) and with three possible values we have 3n =
2(log2 3)n (3nn with threshold). With d possible values we must have at most dn = 2(log2 d)n

behavior (dnn with threshold). Thus, the couplings can not be essentially continuous until
at least dn ∼ 2(n

2) = (2n)n ie. when d ∼ 2n, as far as the dichotomization capacity is
concerned. This should be contrasted with the small number of values required for the
memory capacity to resemble that of the continuous case [4].

Another constraint of importance is that of coupling non-negativity, which we will denote
by a superscripted plus sign on D(n). The simplest case is that of the binary perceptron [4]
with JOIj = 0, 1. In order to derive its dichotomization capacity note that the trivial case
of a perceptron with all couplings of strength one JOIj = 1 gives D∗

1
(n) = 1 (for odd n) and

D1(n) = n+ 2. The derivation is now similar to, but simpler than, that of D0,±1(n). We
find, whenever permitted,

D∗

0,1(n) =
n∑

z=1

z odd

(
n

z

)
= 2n−1 (17)

and (for n > 1)

D0,1(n) =
n∑

z=1

z odd

(
n

z

)
(z + 2) = 2n + 2n−2n (18)
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where in the latter case, we do allow negative biases. We note that D∗
0,1(n) =

1

2
D∗
±1(n), and

D0,1(n) < D±1(n). The latter is always true even though it is possible to convert J = 0, 1
weights to J = ±1 ones via the transformation J±1 = 2J0,1 − 1. This conversion does not,
however, preserve dichotomies.

Finally, we mention the non-negative continuous valued case. For this case analytic
results are not available, and once again we resort to exhaustive enumeration. We have
performed this enumeration for small n and obtained table 2. These results will be useful in
sections 14 and 15 below. For n = 6 we terminated the search after finding 240,000 pattern
sets, having no particular need for the exact number, and as computer time was becoming
excessive.

n D+∗ D+

1 1 3

2 2 6

3 4 20

4 12 150

5 81 3287

6 1684 > 240,000

Table 2: Dichotomization capacity for non-negative continuous perceptrons.

11 Summary of perceptron capacities for small n

In table 3 we present the n = 1 . . . 8 dichotomization capacity for for the most important
perceptron architectures. The second column gives the total number of dichotomies 22

n

,
the upper bound on all the capacities. Note that each row is the square of the previous one.
The next block details the biased cases in order of decreasing capacity, while the third block
similarly contains the unbiased cases. The third and sixth columns contain the capacities
for continuous perceptrons (see sections 6 and 7); the fourth and seventh columns represent
the capacities for the diluted Ising case (see section 10); and the fifth and eighth columns
are the Ising perceptron capacities (see sections 9 and 8). This latter column has entries
only for odd n.

We observe that for large n, all of these perceptrons implement a vanishingly small frac-
tion of the total number of functions. Even for the moderately small n values reported here,
the differences in orders of magnitude between the different architectures are impressive.
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n 22
n

D(n) D0,±1(n) D±1(n) D
∗(n) D

∗
0,±1

(n) D
∗
±1

(n)

1 4 4 4 4 2 2 2
2 16 14 14 10 4 4 –
3 256 104 56 26 14 14 8
4 65536 1882 218 66 104 40 –
5 4.295 · 109 94,572 812 162 1882 122 32
6 1.845 · 1019 1.503 · 107 2918 386 94572 364 –
7 3.403 · 1038 8.378 · 109 10,208 898 1.503 · 107 1094 128
8 1.158 · 1077 1.756 · 1013 34,994 2050 8.378 · 109 3280 –

Table 3: The dichotomization capacity of various perceptron architectures for n = 1 . . . 8
(see text).

12 The unbiased Ising two-layer network

In order to be able to implement more dichotomies we now turn to two-layer networks.
We start with the two-layer unbiased Ising network, which naturally can implement only
hemichotomies. For the same reasons given in section 8 we will only consider odd nI and
nH .

With this architecture, we can at last realize the two nonlinearly separable hemi-
chotomies in three dimensions, by using three hidden units. More generally, we shall now
show that given a large enough number of hidden units all hemichotomies can be attained
(the equivalent of universal realization for this case). Let us consider the matrix M of out-
puts of all possible unbiased Ising perceptrons for all possible input patterns. Since the set
of all such perceptrons is in one-to-one correspondence with the set of all input patterns,
this is a symmetric 2n by 2n matrix of ±1s. We can explicitly give the matrix elements as
follows

Mi,j(n) ≡

{
1 B(i xor j) > n

2

−1 B(i xor j) < n
2

i, j = 0 . . . 2n − 1 (19)

where B(i) gives the number of ones in the binary representation of i, and xor is the bitwise
exclusive or operator. We display the first few such matrices graphically in figure 1.

From inspection we see that M (n) can be decomposed thus :

M(n) =

(
A B

B A

)
.

For odd n, the A matrices are exactly the preceding matrix M(n−1), and B corresponds to
the negative of this same matrix after row or column reflection. The even n matrices have
B = M(n−1), while A is more complex. This A is composed of reflected ‘positive-diagonal’
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matrices and of M(ν) of dimensions up to n
2
+1. We will now show, by induction, that the

even n matrices are full rank, while those with odd n are then obviously of half rank.
The proof goes as follows. The first even case is n = 2 (see figure b), and M(2) is

obviously full rank due to its diagonal structure. The first nontrivial even case, n = 4 (see
figure d), is also easily shown to be full rank by the following argument. The upper half and
lower halves must be of rank 8 due to the positive-diagonal blocks (as above). Thus if there
is linear dependence it must involve both halves. Now lets concentrate on the upper right
quadrant. Any linear combination of its rows must give a vector which is antisymmetric
about its center v9−i = −vi. For a sum involving this type of vector and a sum of rows
of the lower right quadrant to give zero, we must takes combinations in the lower right
quadrant which build this antisymmetry as well. When doing this the lower left quadrant
must sum to zero, and thus can not cancel the sum of upper left quadrant rows, which,
being full rank, can not sum to zero.

Now let us demonstrate the induction step by looking atM(6) (see figure e). Considering
this matrix as being composed of sixteen submatrices, eight of these are exactly M(4), the
four on the minor diagonal are inverted negations ofM(4), and the four on the main diagonal
are the reflected positive-diagonal matrices. It is obvious that no linear dependence can be
totally composed of rows in any strip of quarter height, and so we consider mixing two such
strips. Any pair of strips we chose to combine will involve mixing M (4) (or its inverted
negation) with the positive-diagonal submatrix. There are certainly sums mixing rows of
these two submatrices which give zero. However, as is obvious from the figure, the same
linear combination of rows would be required to give zero when these submatrices appear
in opposite order. This possibility is ruled out by the fact that M(4) is full rank. One
can similarly see that mixing of three or even all four strips will still not lead to linearly
dependent rows, due to the linear independence of the rows of M(4). One can convince
oneself that this same argument, that the linear dependence of rows of M(n) would imply
the dependence of rows of M(n − 2), M(n − 4), . . ., or M(4) holds for all even n, thus
completing the proof by induction.

Now we concentrate on the odd n cases, and chose a linearly independent set containing
half of the perceptrons. Since there are exactly 2n−1 linearly independent perceptrons, this
set spans all possible even functions, and thus any even function, in particular any even ±1
function (hemichotomy), can be expanded in terms of these perceptrons. Thus a two layer
network with 2n−1 hidden units each fed with ±1 couplings, and a single output fed with
possibly continuous couplings, is a universal realizor for hemichotomies. However, these
continuous couplings can be taken to be integer valued in the range −2n−1 . . . 2n−1, since
their explicit calculation involves projecting a vector of ±1 of length 2n−1 on the basic Ising
perceptron outputs. Furthermore, integer couplings can always be emulated by multiple
identical Ising hidden units. We thus reach the conclusion that two layer unbiased networks
with Ising couplings and enough hidden units, can realize arbitrary hemichotomies. There
will be at most 2n−1 groups of 2n−1 hidden units, but in practice less units per group
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n=1 n=2

n=3 n=4

n=5 n=6

n=7 n=8

Figure 1: The first few M matrices for both even and odd nI . Positive matrix elements are
depicted as black squares, and negative elements as white ones. The recursive nature of the
matrices is evident.
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are required and common factors can be removed. In any case this construction, while
necessarily producing a solution network, does not usually produce the smallest such.

Let us now turn to the dichotomization capacity D∗
±1(nI , nH) and to the nH required for

D∗
±1(nI , nH) = 22

nI−1 . Given nH hidden units there are a priori nInH + nH = nH(nI + 1)
independent couplings, and thus 2nH(nI+1) different networks. Before attempting to use this
enumeration for bounding purposes, there are certain symmetries which can be exploited.
First, if for a given set of patterns we find a solution network, there are automatically 2nH

solutions, due to the degeneracy of all networks related by the gauge transformation

JHk,Ij → −JHk,Ij and JO,Hk
→ −JO,Hk

for any j. (20)

Thus, without limiting generality, we can chose all the hidden to output couplings to be +1.
Since the output unit in such a network is +1 only when the majority of the hidden units
are +1, this type of network is often called a committee machine [8]. The gauge symmetry
implies that if there is a two-layer unbiased Ising solution, then there is a committee machine
solution. Thus it is sufficient to consider nInH independent couplings.

Due to the gauge symmetry, we actually put only nInH bits into the network, and we
wish to retrieve 2nI−1 bits (the information about whether a pattern or its negative gives
+1). This leads to the following information theory bound on the number of hidden units
of a universal hemichotomy realizor

nH >
2nI−1

nI
(21)

Thus, eg. for nI = 3, 5, 7, 9, and 11 we require (taking the next odd number) nH > 3, 7,
11, 15, and 95 respectively.

There is yet another type of symmetry transformation which further reduces the number
of distinct networks, permutation symmetry. If we find a solution network for which the
couplings feeding hidden unit k are different from those feeding hidden unit k′, then we can
always obtain a new solution by interchanging all the couplings feeding these two hidden
units. In general, since the order of the units in the hidden layer is arbitrary, we can perform
any permutation of the hidden layer indices, however not every such permutation leads to
a distinct network. Since the hidden units are indistinguishable and any number of them
can have the same couplings, the hidden units are what physicists call bosons. We wish to
determine the number T ∗

±1(nI , nH) of different configurations of nH units which can be in
any of 2nI states (see equation 10). Using the basic formula of Bose-Einstein statistics, we
find

T ∗±1(nI , nH) =

(
2nI + nH − 1

2nI − 1

)
=

(
2nI + nH − 1

nH

)
(22)

Thus, for example for the nI = 5, nH = 3 architecture, instead of 218 = 262,144
different networks, we need only consider

(
32+3−1

3

)
= 5984. Even were each of these to
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realize a different set of patterns, we see that not all the 22
4

= 65,536 hemichotomies are
attainable. In general, the enumeration bound tells us that with nH hidden units we can
implement no more than T ∗±1(nI , nH) hemichotomies, and in order to implement all possible
hemichotomies, we must have

22
n−1

< T ∗±1(nI , nH) =

(
2nI + nH − 1

nH

)
. (23)

For nI = 3, 5, 7, 9 and 11 this means that nH must be at least 3, 5, 15, 55 and 217
respectively. For large n this enumeration bound is stricter than the information theoretic
one given above.

In order to directly determine the dichotomization capacity of unbiased two-layer Ising
networks, we performed exhaustive search for small systems ie. nI= 3, 5, 7. For each nH
tested, we constructed all T ∗±1(nI , nH) distinct networks, presented each with half of the
possible patterns and determined which give +1 outputs, and then tested this pattern set
against a list of pattern sets already found. In this way we found the results given in table 4.

nI = 3 nI = 5

nH = 1 8 32

nH = 3 16 2112

nH = 5 14999

nH = 7 58412

nH = 9 64916

nH = 11 65536

Table 4: Dichotomization capacity for small unbiased Ising two-layer networks, as deter-
mined using exhaustive enumeration.

We see that for nI = 3, three hidden units indeed suffice; however for nI = 5, nH = 11
and the enumeration and information theoretic bounds are evidently not very tight.

13 The biased Ising two-layer network

The biased Ising two-layer network with enough hidden units is a universal realizor. Ac-
cording to the usual proof, one realizes a given dichotomy by allocating hidden units for all
2n possible input patterns. This result, as Minsky and Papert point out [7], is trivial, im-
plying simply that every boolean function has a disjunctive normal form. Many researchers
have assumed that 2n hidden units are necessary, while actually, we can as easily construct
any dichotomy with half as many hidden units – 2n−1 in all. This is due to the fact that
patterns without hidden units will trivially give some output. Thus if less than half of the
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patterns in a dichotomy correspond to positive outputs, we need only allocate hidden units
for them, and set the bias for all other patterns to give −1. If more than half do, we allocate
hidden units only for the negative patterns and set the output bias such that unallocated
patterns give positive output.

We need not, of course, restrict ourselves to odd nI and nH here. Three symmetries can
be called into play — bias quantization (see equation 12), gauge invariance (as in subsection
12); and permutation symmetry (explained in the same subsection). Employing once again
Bose-Einstein statistics we are lead to

T±1(nI , nH) =

(
2nI + nH − 1

nH

)
(nI + 2)nHnH + 2 . (24)

We can now determine the dichotomization capacity by exhaustive enumeration. We
sequentially produce the T±1(nI , nH) distinct networks, present all possible patterns to each
such network, and determine the dichotomies produced. The results of such an experiment
are displayed in table 5 with the biased Ising perceptron appearing as nH = 1.

nI = 2 nI = 3 nI = 4

nH = 1 10 26 66

nH = 2 16 146 1298

nH = 3 250 9858

nH = 4 256 38068

nH = 8 65536

Table 5: Dichotomization capacity for small biased Ising two-layer networks, as determined
using exhaustive enumeration.

We see that only when nH = 2nI−1 can we actually realize all 2nI dichotomies. This is
interesting since the parity function can always be realized with nI hidden units (all with
the equal couplings from input to hidden units, but with different hidden unit biases and
alternating signs to the output unit). Thus the parity function is a comparably simple
function for biased networks (due perhaps to its high symmetry).

14 The unbiased continuous two-layer network

An interesting fact about the unbiased continuous case is that adding a second hidden unit
does not increase the dichotomization capacity over that of an unbiased perceptron

D∗(nI , 2) = D∗(nI , 1) = D∗(nI) (25)
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a third hidden unit is required. The reason is that a two hidden unit network maps the
input space onto the square, which must then be dichotomized by an unbiased perceptron.
We recall from table 3 that there are only four such dichotomizations of the square, all
of which can be realized by a perceptron with one coupling equal to zero. Thus any two
hidden unit unbiased network is equivalent to one with one of the hidden units not effecting
the output at all, which can not dichotomize better than a perceptron.

Now let us estimate the number of distinct networks for this case. The first symmetry for
the continuous cases is that we can take all hidden to output couplings to be non-negative.
Thus we employ the non-negative unbiased perceptrons enumerated in table 2. The input
to hidden layer couplings are the continuous unbiased perceptrons, and we can exploit the
same gauge symmetry as for the Ising cases (leading to Bose-Einstein statistics). Without
further ado we present our estimate for the number of distinct networks,

T ∗(nI , nH) =

(
D∗(nI) + nH − 1

nH

)
D+∗(nH) . (26)

This is actually a gross overestimation, since not all hidden layer vectors are accessed.
The enumeration bound for nH is

22
nI−1

< T ∗(nI , nH) (27)

thus predicts for nI = 3, 4, 5 and 6 that nH must be at least 1, 2, 2, 2 and 3 respectively.
However we know that for three inputs, one, and thus two, hidden units are insufficient
(since only 14 of the 16 dichotomies are linearly separable).

For small systems, exhaustive enumeration can be performed here as well. We can
produce all distinct two layer networks by employing the continuous unbiased perceptrons
found in section 7. The results are shown in table 6. The two nI = 5 pattern sets that
can not be realized with three hidden units are the parity function and its inverse. We see
that the parity function is very difficult to realize with unbiased threshold units. We could
not afford to search through all combinations for four hidden units, but searches of likely
combinations did not turn up solutions. We know that for the special case of Ising couplings
eleven hidden units suffice, so that some nH between four and eleven must be sufficient.

nI = 2 nI = 3 nI = 4 nI = 5

nH = 1, 2 4 14 104 1882

nH = 3 16 256 65534

Table 6: Dichotomization capacity for small unbiased continuous two-layer networks, as
determined using exhaustive enumeration.
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15 The biased continuous two-layer network

This is certainly the most interesting case from the applications point of view. For the
biased Ising two-layer network nH = 2n−1 is sufficient for universal realization. It is quite
clear that fewer hidden units should be required here. The question is — how many?

The enumeration bound for this case gives (as should be obvious at this point)

22
nI

< T (nI , nH) =

(
D(nI) + nH − 1

nH

)
D+(nH) (28)

which merely gives nH > 1 at least to n = 5. From exhaustive enumeration we find the
values given in table 7. Comparing this with table 5 we see that the continuous couplings
indeed increase the dichotomization capacity.

nI = 2 nI = 3 nI = 4

nH = 1 14 104 1882

nH = 2 16 254 41614

nH = 3 256 65536

Table 7: Dichotomization capacity for small biased continuous two-layer networks, as de-
termined via exhaustive enumeration.

16 Summary

We have studied the dichotomization of binary sets by various architectures of feedforward
neural networks. We have reached several conclusions, notably explicit formulae for

• biased and unbiased Ising perceptrons,

• 0, 1 perceptrons,

• 0,±1 perceptrons,

an existence proof that states that

• all hemichotomies are realizable by an unbiased one hidden layer Ising network,

and a limitation

• that unbiased continuous two-layer networks with two hidden units do not perform
better than unbiased continuous perceptrons.
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We have utilized symmetries, namely that the network is not changed by

• bias quantization,

• gauge transformations, and

• hidden unit permutation,

in order to reduce the number of distinct networks, for purposes of

• enumeration bounds,

• exhaustive enumeration for small systems.

However, we have left several interesting questions open. The major ones are

• Are all values 1 · · · 22
n

valid dichotomization capacities?

• What is the capacity of the continuous perceptron, in particular, what is the value of
γ of equation (6)?

• How many hidden units are required for the continuous two layer network to univer-
sally realize?

• How many unbiased hidden units are required to realize the (five bit) parity function?
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[12] Schläfli L. 1950. Gesammelte Mathematische Abhandlungen I., pp. 209-212. Verlag Birkhaäuser,
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