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Abstract

A novel classifier architecture is introduced which belongs to both hyperplane and hy-
persphere families. The basic computational unit in the architecture is a perceptron
whose input is augmented by its squared length. Traditional methods of training hy-
perplane classifiers (perceptron training algorithm, backpropagation, etc.) function in
the augmented input space, and induce hyperspherical decision regions in the original
input space. The multilayer architecture based on these units includes, as specific
cases, the multilayer perceptron and the radial basis function networks.

1 Hypersphere and Hyperplane Classifier Architectures

One conventionally distinguishes between three types of statistical pattern classifiers,
namely example based classifiers (eg. k nearest neighbors), hypersphere classifiers (such as
the radial basis functions or RBF network) (Broomhead and Lowe 1988), and hyperplane
classifiers (such as the multilayer perceptron or MLP network) (Rumelhart and McClelland
1986). Example based classifiers may not require training, but suffer from large memory
requirements, long classification times, and do not, in general, attain the minimal possible
(Bayes) classification error. They will not be considered further here. Hypersphere classi-
fiers have modest training and classification times, excellent false alarm rejection rates and
can attain Bayes error with large training sets. Hyperplane classifiers may require longer
training times but classify faster. They also attain minimal error, but have virtually no
inherent false alarm rejection capabilities (Stein et al 1993). While hypersphere classifiers
endeavor to capture the class probability distributions, hyperplane classifiers only try to
find inter-region boundaries.

Hyperplane classifiers have proven to be more popular than hypersphere ones in prac-
tice, for several reasons. The simplest hyperplane classifier, the perceptron, can be trained
in a finite number of steps, at least when a separating hyperplane exists. The multilayer
perceptron can create arbitrary decision regions, and tends to have somewhat lower mis-
classification rate than hypersphere classifiers for small training sets, due to the more
efficient use of examples during training. The most popular MLP training algorithms are
variants of backpropagation, which do not usually converge to a global optimum, but are
straightforward to implement. RBF training methods either call for a clustering stage, or
arbitrarily chose a small number of input examples as bases.



It would thus be beneficial to combine the best features of hypersphere and hyperplane
classifiers. Such a combined classifier would have simple training procedures as well as
low misclassification and false alarm rates. In the sequel we propose such an architecture,
which can be implemented by making only minimal changes to existing MLP systems.

The connection between neurons which compute the norm of a differences and those
which compute compute inner products has been studied previously (Seligson et al 1992)
with the objective of replacing the latter with the former. That work proved formal
equivalence for neurons with binary input and output, and demonstrated empirically the
inferiority of the difference neuron for other cases. The present work is complementary in
the sense that difference like decision regions are obtained by exploiting product neurons.

2 The Augmented Perceptron

A tactic often employed by pattern recognition practitioners is to add auxiliary variables to
the input. Such auxiliary variables are produced by combining the original input variables
in ways that the classifier itself can not. For the simple hard-limiting perceptron, which
classifies an input pattern as positive or negative based on linear combinations of the input
variables z;
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one might propose to append powers of inputs. This augmentation of the input space is
normally performed unsystematically, perhaps based on intuition or a priori knowledge.
We propose augmenting a perceptron’s input with a single variable, the squared length
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We shall now show that a perceptron operating in the augmented N 41 dimensional space
induces, in general, hyperspherical decision regions in the original space. Hyperplane
boundaries, which are obtained when the coefficient of x4 1 is zero, can be considered as
limiting cases of hyperspheres with infinite radii. We will need the following lemma.
Lemma. When the V 4 1 dimensional paraboloid surface
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has a nonempty intersection with the N dimensional hyperplane
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then its projection onto the N dimensional space spanned by x1 ...z N is a hyperspherical
surface. Conversely, every hyperspherical surface in N dimensional space can be mapped
onto the intersection of the paraboloid surface with a hyperplane.



Proof. The intersection is determined by
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which is of the form of a hyperspherical surface of radius r and center ¢
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when we make the identification
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It is easy to see that when the intersection is nonempty, the rhs of the second identity is
non-negative. The converse is proven similarly.

It is instructive to consider the two dimensional case. The lemma states that the
projection onto the x-y plane of the intersection of a plane with the paraboloid of revolution
z = 2% 4+ y? is always a circle. Were we to replace the paraboloid surface with the cone
2 = \/z? +y?, the projection would then be a conic section. Note that even for our
paraboloid, the intersection itself (not its projection) is an ellipse.

In order to return to the problem at hand, we must change the equalities in (2) and
(3) into inequalities, thus turning the hyperplanes into half spaces, and the hyperspherical
surfaces into hyperspheres. In addition, we must allow for the case where the paraboloid
surface and hyperplane do not intersect.

Theorem. The augmented hard-limiting perceptron classifier, defined as
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induces decision regions in the original space, of one of the following five forms :
1. the empty set,
2. the entire space,
3. a half space,
4. a hypersphere (including a single point),
5. the entire space except for a hypersphere.

Proof. The perceptron defines a positive half space delimited by its hyperplane. We
are interested in the projection onto the original space of that portion of the surface of
the paraboloid which is in the positive half space. There are five possibilities, to which
correspond the five cases:



1. the perceptron hyperplane does not intersect the paraboloid surface and the entire
paraboloid is in its negative half space, resulting in an empty positive decision region,

2. the perceptron hyperplane does not intersect the paraboloid surface and the entire
paraboloid is in its positive half space, resulting in the entire space being in the
positive decision region,

3. the perceptron hyperplane is orthogonal to the original space (ie. the coefficient of
xN4+1 18 zero), and thus the positive decision region is the half space delimited by
the perceptron,

4. the perceptron hyperplane intersects the paraboloid surface and large x 11 is in the
negative half space, and thus, according to the lemma, the positive decision region
is a hypersphere,

5. the perceptron hyperplane intersects the paraboloid surface and large 41 is in the
positive half space, thus, according to the lemma, the negative decision region is a
hypersphere and the positive region includes all points exterior to that hypersphere.

We have thus seen that the augmented perceptron produces one of five types of decision
regions. The half space is less probable in general, and in any case the first three cases can
be thought of as hyperspheres with zero or infinite radii, thus we are justified in saying that
the regions induced are always hyperspherical. From the converse part of the lemma, we
know that all hyperspherical regions in the original space correspond to half spaces in the
augmented space. Thus when a hyperspherical decision region exists it always corresponds
to an augmented perceptron. Exploiting the perceptron learning theorem (Minsky and
Papert 1969) we conclude
Theorem. Assuming that a hyperspherical decision region exists, one can be found in a
finite number of steps.

3 Augmented multilayer perceptrons

We now turn to the application of the augmented perceptron as a building block in more
complex architectures. In order to enable gradient descent learning, multilayer systems
usually employ smooth sigmoidal perceptron rather than the hard-limiting ones we dealt
with in the last section. This does not significantly change any of the results obtained so
far.

The simplest method of utilizing the basic unit is to build an ‘input augmented MLP’,
wherein only the first hidden layer contains augmented perceptrons, the other layers con-
sisting of conventional perceptrons. Pre-existing MLP systems can be converted at mini-
mal expense to this architecture. Input augmented MLP systems have at least the capa-
bilities of the comparable nonaugmented systems, but in addition to being able to form
decision regions in input space bounded by hyperplanes, they can form decision regions
bounded by hyperspherical surfaces.

The single hidden layer input augmented MLP, is equivalent to the RBF network
(Broomhead and Lowe 1988) with a particular basis function. This network is known



to be capable of forming arbitrary decision boundaries. Similarly, using hard limiting
perceptrons and hard wired perceptron outputs, we obtain the RCE network (Reilly et al
1982). We are currently in the process of testing the input augmented MLP in several real
world applications.

Although the single hidden layer input augmented MLP can already form arbitrarily
shaped decision regions, one need not stop there. One can consider multilayer systems
with augmentation of several or all layers.

The last question to be addressed is that of the expected generalization. The squared
distance between two points in augmented space is equal to their squared distance in input
space plus the square of the difference in their squared lengths. Thus two points which
are close in input space, may be far removed in augmented space. The significance of this
effect varies from place to place and is also dependent on the orientation of the points.
Thus test set points, which seem to be close to training set points, may actually give quite
different results.

4 Remarks

There are cases of interest when the augmentation is ineffective. The most prominent
is that of binary patterns, for which single hyperplanes and hyperspheres have the same
capabilities (Seligson et al. 1992). To see this more clearly, consider the input patterns
to be corners of the N dimensional hypercube {S;}i=1,.. n, Si = = 1. Since all patterns
have the same squared length IV, the augmentation has no effect.

It should not be surprising that a linear classifier can produce hyperspherical decision
regions, since the nonlinearity is specifically introduced. Similarly, one can easily map the
inside of a circle to a half plane by a suitable rectangular to polar transformation, without
increasing the dimension. However, actual use of such a transformation in training a
classifier would require a priori knowledge regarding the circle’s center. The augmented
perceptron discovers the appropriate hypersphere center as part of the standard learning
process.

One can obtain more general elliptical regions in a similar manner, by augmenting the
perceptron with N (NN + 1)/2 new dimensions. This significantly increases the number of
augmented perceptron weights which must be learned. For example, in the two dimensional
case we must augment x and y with 22, y? and zy.
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