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Abstract

Shigeru Katagiri and various co-authors have (re)introduced a nonstandard error mea-
sure which can be used in training almost any classifier. This measure is usually called
MCE for Minimum Classification Error, and is often coupled with an equally nonstan-
dard technique, known as GPD for Generalized Probabilistic Descent, for updating
the classifier’s parameters due to the error. In the present paper, we will present this
measure and technique, and describe its use in speech recognition applications.

1 Introduction

We will deal with decision theoretic classifiers, which input a point xεRn, and output a
classification Ck where kε{1 . . .m}. We will assume that the architecture of the classifier
is fixed, but that the mapping from the input to the classification depends on a vector
of parameters W. In such cases the selector representation is most often employed, as
depicted in figure 1. In this representation each possible classification is assigned an
output, and the class corresponding to the output unit with highest value is considered
the winner. Although such a ‘winner-takes-all’ strategy is actually sufficient to utilize
such classifiers (and this is the gist of the MCE formalism), we will see in the next section
that it is prevalent to desire the winner to be unity for inputs which indeed belong to the
class, and zero otherwise. Thus one is led to interpret the outputs as probabilities. Other
representations are possible, eg. binary encoding of the class index, but this format allows
one to hope for a probabilistic-like interpretation of the output values.

Supervised learning is a generic process whereby a parametric classifier can be opti-
mized for a particular problem based on the existence of a teacher, who somehow knows
how to perform the desired classification. For example in the learning by examples par-
adigm the teacher prepares a finite set of classified examples (the training set), which
can be studied by the student classifier. In alternative paradigms, an oracle may exist
which can be consulted for any input the student desires. In any case the goal of training
is to minimize the probability of classification error on any possible input, not only on
inputs which the student has seen during the training process. In order to estimate the
probability of such errors, a distinct test set is commonly used.
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Figure 1: The selector representation

The training itself consists of updating the parameter vector W, in such a way that the
classification error (hopefully) decreases. We will not dwell for the time being on the exact
algorithm used in updating the parameters, rather we will concentrate on the method of
quantifying the error.

2 Cost Functions

We wish now to sharpen the concept of classifier optimization introduced in the previous
section. We assume that we are given a classifier architecture and that all of the free
parameters of the classifier are specified by the vector W. The task at hand is to define a
cost function L(W) which characterizes this classifier’s ‘quality’. The ideal classifier would
have zero cost, while increasing cost corresponds to decreasing classification success.

We would certainly like to use the number of classification errors (or equivalently the
probability of misclassification) made on the training set (or even better on the test set)
as the cost function to be minimized. However, this method of quantifying the classifier
error has serious disadvantages. To see this, consider the behavior of the number of
misclassifications as a function of the parameter vector W. Perturbing W will cause the
output of the classifier to vary, but for most W will not induce changes in the actual
classification. For example, for the selector representation the classification is determined
by the output unit with the highest activity, and only parameter perturbations which
cause another output unit to pass the previous winner will cause the actual classification
to change. We thus see that in the space of parameters, the number of classification errors
is a piecewise-continuous function.

Most methods of classifier parameter optimization are iterative descent methods. Such
methods search for a minimum in the cost function as a function of the parameter vector
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W by starting with some initial guess W0 and repeatedly updating by

Wt+1 = Wt + δWt (1)

such that
L(Wt+1) < L(Wt) . (2)

The simplest example is of course gradient descent which choses to ‘slide down’ the local
gradient of the cost function in w dimensional parameter space by a constant amount

δWt = −ε∇L(W) (3)

where the gradient operator is defined as

∇ ≡ (
∂

∂W1
,

∂

∂W2
, . . . ,

∂

∂Ww
) . (4)

More complex methods, such as conjugate gradient, employ more elaborate heuristics
to set the step size, but still require the cost function to be a continuously differentiable
function of the parameters. The derivative of number of classification errors being zero
almost everywhere and infinite where it is not, is thus an extremely poor choice for iterative
descent.

We are thus lead to consider alternative cost functions. The requirements for such a
function are

• L(W) = 0 if and only if a perfect solution is found,

• L(W1) < L(W2) indicates that W1 is a better solution,

• L(W) is continuously differentiable.

The most common technique for defining such a cost function involves assuming con-
crete values for the output of the selector representation classifier. We mentioned in the
previous section the probability-like choice, wherein we require the output unit corre-
sponding to the correct class to be unity and all others to be zero. A second useful choice
is +1 for the correct class and −1 for the others. We will refer to the former as the
{0, 1} representation and to the latter as the {±1} one. Once concrete values have been
assigned, the desired output is a vector D = (D1, D2, . . .Dn) (with Di in {0, 1} or {±1}
respectively), while the actual output of the classifier is a vector O(W)ε�n. Thus one
may build cost functions based on measures of distance between vectors in �n, as long as
the metric obeys the above requirements. We will define the loss of an input pattern as
the distance between the desired output and the actual output. The overall cost function
will be the sum of the losses for all the input patterns under consideration.

The most common metric employed as a loss function is the squared error
n∑

i=1

(
Oi(W) − Di

)2
(5)
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Figure 2: The three quantities to be observed during training

which, due to an analogy with physical systems, is often called the energy. Another
metric [14], employed when both Oi and Di are constrained to the interval [0 . . . 1], is the
Kullback-Liebler divergence

n∑
i=1

(
Di ln

Di

Oi
+ (1 − Di) ln

1 − Di

1 − Oi

)
(6)

which, due to a similar analogy is also called the entropy. Both of these functions have
global minima for Oi = Di, and the choice between them is application dependent.

When using such distance measures for training, it is common practice to monitor three
quantities as training proceeds (see figure 2). First, the cost function itself, as defined on
the training set (ie. the sum of the losses for all training patterns). Second, the number
of errors the classifier makes on the training set. Lastly, the number of errors made on
a validation set, which is a set of classified examples which is not used for training. The
classification performance on the validation set is meant to reflect the generalization to be
expected on arbitrary inputs. The validation set is often used as an indication of when to
terminate training, since increase in validation error while training error is still decreasing
is attributable to overtraining.

2.1 The Probabilistic Interpretation of Least Squared Error

Let us deal with the one-output (two-class) case. We wish to determine the meaning of
the minimization of the squared error in probabilistic terms. We will show that for the
one-output case, minimizing the squared error of the output leads us to a classifier which is
the minimum mean square error approximation to the Bayes optimal discriminant [6, 13].

Let us denote two classes by Ca and Cb with associated outputs a and b, where (a, b) =
(0, 1) or (a, b) = (−1, +1). Without limiting generality we order the training set of N
examples such that the first Na patterns belong to Ca and the rest to Cb. We further
denote the output of the classifier with parameters W when presented with input x by
O(x;W). Then the squared error cost function can be written

E(W) =
1
N




Na∑
x=1

[O(x;W) − a]2 +
N∑

x=Na+1

[O(x;W) − b]2

 . (7)

We now assume that the training set is large N → ∞ so that the a priori class probabilities
are well approximated by Na

N → p(Ca) and Nb
N → p(Cb) and thus by the strong law of
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large numbers

E(W) →
∫

[O(x;W) − a]2p(x, Ca)dx +
∫

[O(x;W) − b]2p(x, Cb)dx

=
∫

O2(x;W)[p(x, Ca) + p(x, Cb)]dx − 2
∫

O(x;W)[ap(x, Ca) + bp(x, Cb)]dx(8)

+a2
∫

p(x, Ca)dx + b2
∫

p(x, Cb)dx (9)

where the joint probability p(x, Ci) obeys

p(x, Ci) = p(Ci|x)p(x) = p(x|Ci)p(Ci) (Bayes Theorem)∫
p(x, Ci)dx = p(Ci)

p(x, Ca) + p(x, Cb) = p(x) .

Defining

g(x) =
ap(x, Ca) + bp(x, Cb)

p(x)
= ap(Ca|x) + bp(Cb|x)

= p(C1|x) for (a, b) = (0, 1)
= p(C1|x) − p(C−1|x) for (a, b) = (−1, +1)

which for the (0, 1) case is the a posteriori probability of C1 and for the (−1, +1) case the
Bayes optimal discriminant, we find

E(W) =
∫

[O2(x;W)p(x) − 2O(x;W)g(x)p(x)]dx + a2p(Ca) + b2p(Cb)

=
∫

[O(x;W) − g(x)]2 −
∫

g2(x)p(x)dx + a2p(Ca) + b2p(Cb) .

Since only the first term above depends on W, minimizing E(W) by varying W is equiv-
alent to searching for a classifier function O(x;W) which best approximates g(x). We
have thus proven that for the one-output case, minimal energy training leads to output
values which best approximate the a posteriori probability. This is indeed surprising, since
only the two extreme values a and b are presented during training! Of course the usual
caveats to approximation methods apply, eg. the rule may not be realizable in terms of
the classifier architecture, there may be local minima, there may be insufficient training
data, etc.

For the case of (a, b) = (0, 1), and for classifiers which employ all positive sigmoidal
functions at the output (for example MLPs), one can say even more. Let us call the output
before the sigmoidal squashing Z(x;W), so that

O(x;W) =
1

1 + e−Z(x;W)
or Z(x;W) = ln

O(x;W)
1 − O(x;W)

.
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We have seen that O(x;W) ≈ p(C1|x) and so (noting that the normalization requires
1 − p(C1|x) = p(C0|x))

Z(x;W) = ln
p(C1|x)
p(C0|x)

= ln
p(x|C1)
p(x|C0)

+ ln
p(C1)
p(C0)

. (10)

The fact that minimization of squared error of the squashed output leads to a type of
maximum likelihood criterion on the unsquashed output should not surprise us. Along
the boundary between two classes the two posterior class probabilities must be equal,
and thus a function which is zero along this boundary and increases monotonically when
approaching one of the classes can always be considered a ‘distance’ to the boundary.

If MLP training techniques induce a maximum likelihood criterion, such as is used in
HMM training, what then are the advantages of the neural network approach? Firstly, a
(sufficiently large) neural network is a universal approximator and thus, in principle, one
need not deal with the effects of model mismatch. Secondly, it has been shown that neural
networks are very efficient in their use of input information, often surpassing the universal
Vapnik-Chervonenkis upper bound for generalization error as a function of training set
size. Thirdly, neural networks are flexible: one can easily add false alarms to the training
set, combine neural modules, and add auxilliary information even without theoretical
understanding of its relevance.

Now let us consider what happens when there are multiple outputs. Limiting ourselves
to the (a, b) = (0, 1) representation, we can show in a way analogous to the above, that
minimization of the energy leads to the minimization of

m∑
i=1

∫
[O(x;W) − p(Ci|x)]2p(x)dx

ie. to the simultaneous approximation of the m posterior class probabilities p(Ci|x) ac-
cording to the ‘minimal average-of-squared-errors’ criterion. However,

∑m
i=1 O(x;W) �= 1

and thus the individual outputs are not really probabilities at all. One can simply normal-
ize after training, but this does not really ameliorate the situation since this is no longer a
least squares solution to the original problem. There are several possible solutions to this
problem, including adding a special normalization layer (involving much more elaborate
training) and building histograms or Parzen windows on the classifier outputs.

The maximum entropy criterion can be discussed in a fashion similar to the above
discussion for the energy. The results are that maximum entropy is equivalent to the
maximization of the mutual information between the class identification and the input

I(Ci;x) = H(Ci) − H(Ci|x)

where the a priori uncertainty is

H(Ci) = −
∑

p(Ci) ln p(Ci)
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and the equivocation or uncertainty as to the class identification after observing x is

H(Ci|x) = −
∫

p(x)[
∑

p(Ci|x) ln p(Ci|x)]dx .

Note that if x gives no information as to the proper classification then H(Ci|x) = H(Ci)
and I(Ci;x) = 0; while if the classification is obvious H(Ci|x) = 0 and then I(Ci;x) =
H(Ci).

2.2 The Problem with the Least Squared Error Criterion

We have seen that the minimization of energy is both simple to perform and has a reason-
able probabilistic interpretation. Energy minimization training along with monitoring the
three quantities of figure 2 should thus lead us to a high quality solution. There is still,
however, a serious mismatch between the desired criterion of minimal error probability
and the criterion actually used.

To see this we present somewhat pathological cases. We do not mean to imply that
only for such unusual cases is the mismatch of importance – one may obtain suboptimal
error performance in more general settings as well. The idea of this section is simply to
demonstrate the mismatch by reductio ad absurdum.

First let us note that while zero energy indeed implies perfect classification, the con-
verse is not true. It is quite possible (and even commonplace) for the classification error
to be zero, while the energy is positive. This occurs simply because a proper classification
occurs when the appropriate unit is maximal, even if it is not +1 and all the others inac-
tive. Thus the energy, or indeed any criterion based on concrete output values, does not
supply a good indication of when training is unnecessary, and thus unwise overtraining
may be performed.

Secondly we observe that the energy can decrease without a complimentary decrease
in classification error – indeed the error may even increase. For example consider an input
which belongs to class number 1 and for which the output unit activations are

λ + ε, λ − ε, ε, . . . , ε (m − 2 εs) .

This clearly correctly classifies the input, and the energy is easily seen to be E = 1+2λ2−
2λ− 2ε+mε2. Now assume that after a particularly unfortunate training step the output
layer becomes

λ − ε, λ + ε, ηε, . . . , ηε

which misclassifies the input, but has energy E = 1+λ2−2λ+2ε+mη2ε2+2(1−η2)ε2 which
will be lower than the original energy if (1 − η2) > 4

(C−2)ε (always true for a sufficiently
large m). For this case the energy has indeed decreased, but the classification has become
worse!
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3 Defining the MCE Cost Function

The message of the MCE approach is that, despite the objections raised in the beginning
of section 2, one can use the criterion of decreasing classification errors and thus avoid
the pathological situations brought about by energy minimization. The idea is to define
a cost function which is directly related to classification error, but at the same time is
continuously differentiable.

In order to understand the MCE cost function, it is advantageous to divide its definition
into four stages. The first stage is simply the basic discriminant function, and is thus
architecture and problem dependent. This discriminant is the only function needed for
actually classifying an input – all the rest are for training purposes only. The last stage
is the cost function itself, which functions as the classifier error to be minimized by the
training process. The second and third stages are auxilliary functions, which could equally
well be absorbed into the cost function, but are defined separately for purely didactic
purposes.

3.1 The Discriminant Function

We will denote this function by gk(x;W), and its meaning is as follows. Given a classifier
specified by the parameter vector W, to what degree does the input x belong to class
Ck? The discriminant function is always assumed to be nonnegative, but in the MCE
literature there are two contradictory types of discriminant; for one type the discriminant
is maximal for the desired class, while for the other it is minimal. The origin of this
discrepancy is simple to understand. For DTW-based speech recognizers it is convenient to
use the dynamic programming distortion score as the discriminant, and thus we desire the
discriminant to be minimal. On the other hand, were the a posteriori probabilities known,
it would be natural to identify gk(x) = p(Ck|x), and to desire maximal discriminant.

The discriminant function does not depend on the fact that we intend using MCE in its
training, and is chosen according to the task at hand and the architecture of the classifier
chosen. As was mentioned before, the discriminant function is also the only function
which exists after the training, and thus its determination is the task to be accomplished.
Alternative training philosophies which share a given discriminant function will in general
produce different discriminant functions (ie. different parameter vectors W).

3.2 The Misclassification Measure

This function, which we shall denote dk(x;W), indicates to what extent an input in the
training set x belongs to class Ck as compared to the other classes Cj . Here we assume
that k is the class to which x really belongs, which is known for all training set examples.
Since this is a misclassification measure, we desire dk(x;W) > 0 to signify that the input
x is not properly classified. Conversely, for proper classification dk(x;W) < 0 and thus
the training procedure must strive to minimize dk(x;W).
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Actually, the theoretical MCE literature defines a family of misclassfication measures,
specified by a parameter which weights the influence of the incorrect classes. The exact
form proposed, for discriminants maximal for the desired class, is

dk(x;W) = −gk(x;W) +


 1

m − 1

∑
j �=k

gj(x;W)η




1
η

(11)

where m is the number of classes, and η > 0 is the aforementioned weighting parameter.
Note that the discriminant is essentially being enumerated, with the proper class being
taken with opposite sign. The particular form of enumeration (the so called Lp or Hölder-
norm) is somewhat peculiar, and gives the characteristic formula structure which one
observes in all MCE articles. The basic idea behind this enumeration is quite simple. For
η = 1 the second term on the rhs of (11) is the simple average of the discriminant for
all the incorrect classes. For η = 2 we have the Pythagorean average

√
g2
2 + g2

3 + · · ·, and
for η → ∞ only the incorrect class with the highest discriminant remains. In this limit,
denoting the index of the best matching incorrect class by i, we have

dk(x;W) = gi(x;W) − gk(x;W) (12)

which is the form most often used in actual applications, and is similar to the criterion of
the Neyman-Pearson test. For the special and idealized case of two classes k = 1, 2 and
exact a posteriori probabilities gk(x) = p(Ck|x), we obtain in this limit,

d1(x) = −
(
p(C1|x) − p(C2|x)

)
(13)

which is the negative of the Bayes optimal discriminant for this case, with the MAP
decision rule corresponding to

d1(x) < 0 ⇒ xεC1 and d1(x) > 0 ⇒ xεC2 . (14)

For η < ∞ the MCE misclassification measure does take classes other than the most
significant into consideration.

For discriminant functions of the type which are minimal for the desired class, equa-
tion (11) must be replaced with

dk(x;W) = −gk(x;W) +


 1

m − 1

∑
j �=k

gj(x;W)−η



− 1

η

(15)

in order that the η → ∞ limit select the best matching incorrect class.
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3.3 The Loss Function

In order to count the number of errors a classifier makes, we should calculate

Nerrors =
∑
x

Θ
(
dk(x;W)

)
(16)

where Θ(z) is the step function (Θ(z) = 0 for z < 0 and Θ(z) = 1 for z > 0) and the sum
is over all inputs in the set under consideration, usually the training set. In this fashion we
could directly count the number of misclassifications, and were one to attempt to employ
this quantity as a cost function, one would be lead to the problems mentioned in section 2
supra. Instead we wish to smooth the step functions, so that the cost function’s derivatives
will be everywhere continuous and nonzero. However, this smoothing must be performed
without sacrificing the fundamental characteristics of the step function, namely by using
in its stead a sigmoid function σ(z) obeying

• monotonicity z1 < z2 ⇒ σ(z1) < σ(z2),

• bounded 0 < σ(z) < 1 everywhere,

• unbiased σ(0) = 1
2 , and

• proper limits σ(z) z→−∞−→ 0 and σ(z) z→∞−→ 1.

The particular sigmoid usually employed is the logistic or Fermi sigmoid

σ(z) ≡ 1
1 + e−βz

. (17)

Using the sigmoid smoothing, we define the loss function

�k(x;W) = σ
(
dk(x;W)

)
(18)

and indeed note that when dk becomes large and negative (indicating proper classification)
the loss approaches zero; while a definite misclassification (one for which dk → ∞) causes
a loss of unity. Thus, at least for large β, summing over �k(x;W) should give a good
approximation to the quantity in (16).

Now that we have smoothed the enumeration of the number of errors, won’t we return
to a cost function which is similar in its faults to squared error? The answer is no, for
several related reasons. One can in principle take the limit β → ∞ and approach the step
function enumeration as closely as desired. In addition, even for relatively small β, far
from transitions the loss function approximates the step function. This behavior should be
contrasted with that of a squared distance function which increases without limit rather
than saturating.
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3.4 The Cost Functions

We are finally ready to define the overall cost functions. The literature deals with two types
of overall costs, the empirical average cost and the expected cost. The former (MCE)
can be minimized using standard gradient descent methods, while the latter requires a
technique known as Generalized Probabilistic Descent (GPD).

The empirical average cost function is simply the average of the loss over the entire
training set

L0(W) =
1
N

∑
i

�ki
(xi;W) (19)

where i = 1 . . . Nt runs over all examples in the training set, xi is the training set example
itself, and ki stands for the index of the class to which xi really belongs. In contradistinc-
tion to this restricted definition, the expected cost function (the GPD cost) is defined to
be

L(W) =
〈
�kx(x;W)

〉
(20)

where here the average is taken over all possible inputs x (not just the training set exam-
ples), and kx stands for the index of the class to which x really belongs (which in general
is unknown).

How do we utilize these cost functions? We want to find a parameter vector W to be
used in gk(x;W) as discussed in subsection 3.1 above, optimal in the sense that the cost
function will be minimized. We directly minimize the cost function by iteratively updating
the parameter vector W via equation (1). We emphasized the word ‘directly’ since unlike
the alternative methods, we do not define desired outputs (as in least square error) and
make no assumptions about the probability distributions (as in maximum likelihood).

Let us deal first with the MCE cost function, and employ simple gradient descent (3)
as the minimization technique. We will now explicitly show that gradient descent reduces
the MCE cost function for small enough step size ε. While this proof is well known, and
indeed trivial, we include it here for comparison with the GPD derivation to be given
below. For small step size, L0(Wt+1) can be expanded to first order as follows

L0(Wt+1) = L0(Wt + δWt)
≈ L0(Wt) + δWt · ∇L0(Wt) (21)
= L0(Wt) − ε|∇L0(Wt)|2 < L0(Wt)

as required. Using the definition (19) in the expression for gradient descent (3), we can
write explicitly

δWt = − ε

N

∑
i

∇�ki
(xi;Wt) (22)

and furthermore continue to differentiate through the sigmoid, (etc. etc.) until we arrive
at the derivative of the discriminant itself.
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In the late sixties Shunichi Amari developed a theory of adaptive pattern classifiers,
ie. classifiers which dynamically adjust themselves to changing environments. Such clas-
sifiers need not be pretrained and then used statically, rather the training is kept ‘on-line’
and thus can follow dynamically varying probability distributions of the classes. Amari
concentrated on linear classifiers, as these were the state-of-the-art of the time, but gen-
eralized the theory to the general case as well. The main contribution of this work is
the development of an adaptive algorithm (later to be called GPD) which provably con-
verges to a locally optimal classifier in a probabilistic sense. Since Amari dealt with input
patterns that are constantly arriving rather than in a fixed training set, the optimality is
from the point of view of any input x chosen according to the probability distribution used
to generate the examples previously seen. This can be applied to the case of a defined
training set as well, in which case the training examples are repeatedly presented, but we
strive to reduce the expected cost (20).

Let us write equation (20) more explicitly.

L(W) =
∑
k

P (Ck)
∫

�k(x;W)p(x|Ck)dx (23)

where the sum is over all the classes, the integral over all inputs in class Ck, P (Ck) is
the a priori probability of the class, and p(x|Ck) is the probability distribution of the
class. Once again we will update the parameters by equation (1), but now we wish to have
L(Wt+1) < L(Wt). We now proceed as in (21)

L(Wt+1) = L(Wt + δWt)
≈ L(Wt) + δWt · ∇L(Wt) (24)

but since the probabilities P (Ck) and p(x|Ck) are not known, we can not force δWt =
ε∇L(Wt). We can obtain reduction in L(Wt) on the average (thus Probabilistic De-
scent) by requiring [1] 〈

δWt · ∇L(Wt)
〉
≤ 0 (25)

which leads to an update rule which takes only the present input xt into account

δWt = −εU∇�k(xt;Wt) (26)

where U is a positive definite matrix. To show that this indeed leads to the desired
reduction in expected cost, we need only to calculate

〈
δWt · ∇L(Wt)

〉
=

〈
δWt

〉
· ∇L(Wt)

= −ε∇L(Wt)U
〈
∇�k(xt;Wt)

〉
(27)

= −ε∇L(Wt)U∇
〈
�k(xt;Wt)

〉
= −ε∇L(Wt)U∇L(Wt) ≤ 0

12



the inequality following from the positive-definiteness of U, and equality only being pos-
sible if ∇L(Wt) = 0 ie. a local optimum is found.

One can further show that if the GPD training procedure is supplied with an infinite
sequence of inputs x and the step size is varied according to any schedule which obeys

∞∑
t=1

εt = ∞ (28)

and ∞∑
t=1

ε2
t < ∞

then Wt converges with probability one to a local minimum of L(W). The convergence
can be shown to be extremely efficient (in fact exponential); however the choice of ε induces
a trade-off between the speed and the accuracy of convergence.

Since U may be taken to be the identity matrix (which is certainly positive definite),
it seems that equation (26) and (22) are essentially identical. The basic differences are in
the step size ε which is constant for MCE but must taken according to (28) for GPD, and
in the added degrees of freedom of U. In applications where U is chosen wisely and varied
(as εt is) it is called Ut the learning matrix.

4 Using MCE and GPD in Specific Architectures

After the somewhat lengthy theoretical discussion of the previous sections, we turn now
to the practical application of the principles of MCE/GPD training as applied to popular
classifier architectures. One of the strengths of the MCE methodology is its wide applica-
bility – indeed almost any parametric classifier can be trained via MCE, and it turns out
that the required modifications to existing training algorithms are usually minor. In the
following we will discuss the application of MCE to three classifier structures, multilayer
perceptron neural networks (MLP), hidden Markov models (HMM) and dynamic time
warping (DTW). MCE has been applied to other structures as well (eg. LVQ) , and even
to the design of feature extractors [2].

4.1 MLP

It is perhaps simplest to begin with the application of the MCE/GPD technique to feed-
forward neural network classifiers. These classifiers consist of a number of processing
elements called ‘neurons’, n of which are designated inputs, and m of which are outputs.
The input neurons may feed intermediate (hidden) neurons which in turn may feed still
other neurons, and so on until finally the output neurons are reached. No loops (feed-
back connections) are allowed. A pattern is presented by copying its values into the input
neurons and forward propagating the signal towards the output. Training patterns are
supplied with desired outputs and the actual output can be compared with these. The
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usual training technique consists of minimizing the squared error criterion by backwards
propagation of the error from the output layer back towards the input.

Let us denote the output of neuron i by zi. For all neurons which are not input neurons

zi = σ̂(yi) = σ̂(
∑
j

wijzj) (29)

where yi =
∑

j wijzj is the neuron’s potential, the sum is over all neurons which feed neuron
i, wij is the weight connecting neuron j to neuron i (any bias terms have been absorbed into
the sum by assuming a constant unit), and the function σ̂(y) is a monotonic ‘squashing’
function, usually sigmoidal in character, which transforms the neuron’s potential yi into its
output zi. We use σ̂(y) to denote tanh-like sigmoids, which tend to −1 for large negative
arguments, saving σ(y) for all-positive sigmoids, as in equation (17). The squared pattern
error (5) is

Esq.err =
∑

i

(zi − Di)
2 (30)

where the sum is over the m output neurons only, and Di are the desired output values.
Gradient descent implies changing the weights feeding output units i as follows (neglecting
momentum terms) :

δwij = −ε
∂Esq.err

∂wij
(31)

where the derivative can be calculated by the chain rule

∂Esq.err

∂wij
=

∂Esq.err

∂yi

∂yi

∂wij
=

∂Esq.err

∂yi
zj

and furthermore
∂Esq.err

∂yi
=

∂Esq.err

∂zi

dzi

dyi
=

∂Esq.err

∂zi
σ̂′(yi) (32)

where σ̂′(y) is the derivative of the squashing function, and finally

∂Esq.err

∂zi
= 2(zi − Di) . (33)

Thus the weight change for weights feeding an output is given (absorbing the constant
factor of 2 into ε) by

δwij = −εzj σ̂
′(yi)(zi − Di) . (34)

For non-output neurons, the expression is somewhat more complex, but will not be re-
quired here.

Let us now substitute the MCE error criterion for the least squared one. Formally,
we replace the above squared error energy with the loss function EMCE = �k(x;W) =
σ(dk(x;W)) which in turn is derived from the following misclassification measure

dk(x) = −zk +


 1

m − 1

∑
j �=k

zη
j




1
η

η→∞−→ zh − zk (35)
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where h signifies the output i �= k with maximal activation. It is obvious that use of this
cost function rather than the squared error will only change the expressions for updating
weights which feed output neurons. Indeed, the only change to be made in the above
derivation is in the derivative with respect to zi; equation (33) being replaced by

∂EMCE

∂zi
=

∂�k(x;W)
∂zi

= σ′ (dk(x))
∂dk(x)

∂zi
(36)

with dk(x) given above. Explicitly differentiating

∂dk(x)
∂zi

=




−1 i = k
zη−1
i

m−1

[
1

m−1

∑
j �=k zη

j

] 1
η
−1

i �= k
(37)

η→∞−→




−1 i = k
+1 i = argmax

j �=k

zj

0 else

(38)

so that we finally arrive at the correction to the weight connecting neuron j to output
neuron i

δwij = −ε
∂EMCE

∂wij
= −εzjσ̂

′(yi)σ′ (dk(x))
∂dk(x)

∂yi
(39)

η→∞−→ εzj σ̂
′(yi)σ′ (dk(x))




+1 i = k
−1 i = argmax

j �=k

yj

0 else

.

The meaning of the corrections introduced by MCE is now made clear by comparing
equations (34) and (39). In conventional backprop the contribution of an output neuron i
to the squared error as given by equation (33), is the difference between the activation and
the desired value, and this is what is backpropagated. Since for MCE there is no desired
value, we backpropagate in its stead the expression in equation (36), which is the product
of two factors. For large η, the factor given in equation (37) causes the desired output
to be strengthened (ie. dk becomes more negative), the highest undesired output to be
weakened, and no other weights are updated. These corrections are further multiplied
by a symmetric weighting function, which for the standard sigmoid (equation (17) with
β = 1) is σ′(dk) = σ(dk) (1 − σ(dk)). This factor is bounded 0 < σ′(dk) ≤ 1

4 and takes its
maximum value when dk = 0 ie. when the pattern is close to an intercategory boundary.
Thus when patterns are close to borders (are only marginally classified) the parameter
vector is changed by large steps, while for patterns far from these borders (including both
correctly and incorrectly classified patterns) the parameters vector changes are smaller.

In [?] the MCE-MLP is tried on several benchmark classification tasks. The first task
was an artificially generated two class Gaussian mixture in two dimensions. Three kinds of
linear classifiers were trained, according to the least squared error, perceptron, and MCE
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criteria, and the test set error percentages (averaged over four runs) were 14.91%, 11.18%
and 9.85%, respectively. The second task was Fisher’s well known ‘Iris’ database, which
consists of four measurements on three types of Iris flowers. Here both linear classifiers
and three-layer MLPs were trained, with the linear classifiers attaining 15.1%, 14%, and
4% error, the least square MLP 12.3% error, and the MCE-MLP being the best with
only 2.2% error. The third task was the so called ‘E-set’ speech recognition test, which
requires differentiation between the names of the letters in the alphabet which end in e
(b,c,d,e,g,p,t,v,z). Fifty male and fifty female speakers spoke the letters in isolated fashion
over dial-up telephone lines. The audio was sampled at 6.67 KHz and 24 cepstral features
(12 cepstrum + 12 delta-cepstrum) were extracted. A conventional DTW reached 59.8%
accuracy, which was improved to 63.9% by a perceptron trained by least squared error,
and to 70% when GPD was employed.

The present author has often found that when the MLP has relatively few hidden
units the MCE criterion tends to cause the network to get caught in a relatively poor local
minimum, while the squared error criterion fairs better on the average. This is due to the
aforementioned fact that very incorrectly classified patterns are not corrected. This can
be easily remedied by initially training with squared error and polishing off with MCE.

4.2 DTW

At first glance it would seem to be impossible for DTW based classifiers to take advantage
of the MCE/GPD training techniques, since they are not usually trained at all. DTW
classifiers are conventionally constructed by simply selecting one or more templates per
word (or whatever phonetic unit is desired to be recognized), or by clustering and selecting
cluster centers, with most computation being relegated to the recognition phase. However,
where there is a will there is a way, in fact in this case at least two ways [3, 4, 9, 11]. For
MCE/GPD training of DTW classifiers, the reference template parameters are gradually
adapted in accordance with input patterns. As is always the case, the classification phase
is uneffected by the use of MCE.

We will take the DTW parameter vector to be W = {rkb, wkb} where k = 1 . . . m is
the word index, b = 1 . . . bk is the utterance of word k index, rkb is the variable-length
reference template of feature vectors for utterance kb, and wkb is an (optional) weighting
for this template. We desire an algorithm which will adapt W, that is both the template
and its weighting, with each presentation of a training pattern.

The basic discriminant function is somewhat more complex than those we have con-
sidered before. We need some way of utilizing the DTW distortions (path scores), which,
for word k, template b and path θ we denote (following [4, 9])

Dθ(x; rkb, wkb) =
1

Fkb

Fkb∑
f=1

wkbf ||xθf − rkbf ||2

where Fkb is the number of frames in template kb, f = 1 . . . Fkb is the running frame
index, wkbf is the relative importance weighting for frame f in template kb, xθf is the
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input frame which corresponds to rkbf along DTW path θ, and we can take the frame
distance to be squared Euclidean

||x − r||2 =
n∑

ν=1

(xν − rν)2

where ν = 1 . . . n is the input feature index. In [9] the importance weightings wkb are
neglected (taken to be unity) and only the template parameters rkb are trained, conversely
in [3] the templates are determined via k-means clustering and only the weights are trained.

We could consider, for each word, the best path for the best template. However, in
keeping with MCE philosophy, in order to ensure continuity and differentiability of the
resulting cost functions, it is necessary to form weighted sums of the type one employs in
the definition of the misclassification measure. We do this, as usual, in stages.

First one defines the reference distance between input x and template kb as

D(x; rkb, wkb) =


 1

Θkb

Θkb∑
1

{Dθ(x; rkb, wkb)}−ξ



− 1

ξ

where the sum is over all Θkb possible DTW paths. ξ is some positive number, and the
exponents are taken negative due to the fact that smaller distances correspond to better
matches. One can of course restrict ones attention to the most important paths for large
ξ, and in the limit ξ → ∞ only the optimal path contributes. (Were one to use positive
exponents the worst path would dominate!)

Now one defines the discriminant as the class distance between input x and word k

gk(x;W) =


 1

bk

bk∑
1

{D(x; rkb, wkb)}−ζ



− 1

ζ

where the sum is over all bk templates belonging to word k. For large ζ only those templates
with small DTW distortion contribute, with the closest template dominating the sum for
ζ → ∞.

Next one defines the misclassification measure to be

dk(x;W) = −gk(x;W) +


 1

m − 1

∑
j �=k

gj(x;W)−η




1
−η

and the loss and cost functions are defined as usual. One can now carry out the differentia-
tions in equation (22) or (26) in order to obtain explicitly an iterative correction algorithm
for the parameters rkb and wkb. The exact expressions are rather unenlightening and will
not be quoted here.
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The alternative implementation of GPD for DTW [11] exploits the similarity between a
particular version of LVQ (Learning Vector Quantization) and GPD. First a shift invariant
phoneme detector is trained based on the discriminant

gk(x1,x2 . . .xF ;W) =
F∑

f=1

[
m∑
1

||xf − rk||−ζ

]− 1
ζ

where F input feature vectors are taken into account, and rk are phoneme templates.
The training is carried out via a generalization of LVQ3 with GPD criterion, and the
resulting classifier is called the PBMEC (Prototype Based Minimum Error Classifier).
Next the words are considered to be phoneme sequences, with parameters shared for the
same phoneme in different words. A time window is shifted over the input and for each
word, a matrix of frame positions vs phonemes is constructed containing the input to
template distances. DTW is then used to find an optimal path, and during the training
phase phoneme templates are corrected along this path (more generally all paths should
be considered as above). The resulting architecture is similar to the MSTDNN and will
not be further described here.

We conclude this subsection with a few selected experimental results. A telephone-line
E-set task on which a conventional speech recognizer performs 67.6% classification was
improved by [3] to 78.1%. For a similar problem with base-line performance of 61.7% [9]
reports 76.7% classification. [4] similarly considers this same benchmark and obtains a
best result of 83.7%.

4.3 HMM

In order to apply MCE/GPD to hidden Markov models, we must first define an appropriate
discriminant function. We would like to take the discriminant to be the log-likelihood score
of the input utterance for the k’th word model along its optimal path Θk [5]

gk(x;W) = log P (x, Θk|λk) = log πk
θ0

+
F (x)∑
f=1

log ak
θk
f−1

θk
f

+
F (x)∑
f=1

log bk
θk
f

where F (x) is the number of frames in the input, θk
f is the state sequence of the optimal

path Θk, and the kth model’s parameters λk consist of π, a and b which are the initial,
transition and output probabilities respectively.

The problem with such a Viterbi-like approach is that while changes in the π, a and
b parameters are smooth, changes in most likely path are discrete in nature. Thus, with
such an approach, one would not be able to differentiate the resulting cost function. The
alternative is to use a Baum-Welch-like approach, wherein we consider the likelihoods of
all legitimate paths

gk(x;W) = log
∑
Θk

P (x, Θk|λk) .
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As usual, the system will classify the input as belonging to word k only if the discrim-
inant is greater than that of all other models. We must next define a misclassification
measure based on the discriminant, and proceed to define the loss and cost functions as
usual. In the misclassification measure the a and b parameters will appear raised to some
power η (with of course the corresponding 1

η outside the sum). When η → ∞ the likely
(Viterbi) path dominates, and the two approaches above become the same. Iterative gra-
dient descent correction formulas can be derived which replace the usual (Baum-Welch)
re-estimation formulas. There are many different types of HMM models, and accordingly
many variants of the MCE/GPD approach to them. Detailed description of two such ap-
proaches are given in [5, 12]. It will suffice to quote two experimental results. Ten cycles
of segmental-GPD training [5] increased a telephone channel E-set recognizer (10-state
5-mixture Left-Right) from 76% to 88.3% recognition, which these authors claim to be
the best attained on this set. On the TI connected digit database, base-line 98.7% was
improved to 98.8% by this same method.

5 Application to Open Set Problems

Up to now we have dealt with ‘closed set’ problems, ie. problems wherein the input to
the classifier always belongs to one of the classes to be recognized. For such problems
the only type of error is misclassification. Many real-world problems are of the ‘open-
set’ variety, ie. inputs may not belong to any of the classes. In such problems we have
two types of errors, misclassifications and false alarms. For example, when classifying
phonemes in continuous speech or characters in cursive script, we have no general method
of a priori faultless segmentation, and may elect to require the classifier itself to perform
this function. Such a classifier is usually called a spotter. If a spotter identifies a region
between two phonemes / characters as valid, a false alarm results. In order to deal with
false alarms we must slightly change the four functions of section 3 in order to obtain the
Minimum SPotting Error (MSPE) criterion [10].

In order to be specific we will tailor our presentation to speech spotting problems
(which can be word spotting or phoneme spotting). First we will define our nomenclature
and notation. The input (eg. incoming speech) is divided into frames, and S-dimensional
feature vectors are extracted from each frame. The feature vector of frame i will be
denoted xi = (xi1 , xi2 . . . xiS )ε�S . A block b is the sequence of feature vectors between
frames pb and qb which is of length Ib = qb − pb + 1, namely x = {xi}qb

i=pb
. We will assume

a somewhat specific architecture for the spotter, that of one model per class (eg. word
or phoneme) to be spotted, each of which has its own decision threshold. The parameter
vector of the entire spotter thus divides up into m sub-spotters W = {wk, hk}m

k=1 where
wk are the parameters of the class model and hk is the decision threshold.

The discriminant function, gi
k(x, wk), indicates the similarity in frame i between the

input x and the k’th class. The spotting measure db
k(x,W) is positive when the class k is
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Figure 3: The MSPE loss function for actual examples (left) and false alarms (right)

deamed to be present in block b, and is defined by

db
k(x,W) = hk − ln


 1

Ib

qb∑
i=pb

e[gi
k(x,wk)]−ξ




− 1
ξ

. (40)

The calculation of this measure entails computation of the discriminants corresponding to
class k for all frames in block b (from pb to qb), plugging them into a MCE-like averaging
formula (averaging over frames in a block) and comparing the logarithm of this formula
with the decision threshold. Note that the spotting measure has an interpretation which
is somewhat different from that of the misclassification measure in two respects. First,
higher spotting measures imply more likely word appearances (ie. the spotting measure
is actually akin to a classification measure). Secondly, rather than comparing one class
to the others, we compare the class to a class-dependent threshold. This results from
the assumed sub-spotter architecture and allows consistent treatment of false alarms and
misclassifications, at the expense of adding m new parameters to be determined.

The loss function must now take both misclassifications and false alarms into account,
and so is defined as

�b
k(x,W) =

{
γk

t σαk
t βk

t
(db

k(x,W)) if class k really in b

γk
f σαk

f
βk

f
(db

k(x,W)) else . (41)

Here the sigmoid is given by

σαβ(z) =
1

1 + eα(z−β)

the cutoffs βk
t and βk

f relate to the discriminant values which should differentiate between
detections and rejections, the weights γk

t > 0 and γk
f > 0 determine the relative importance

of a misclassification to a false alarm, while the inverse temperatures αk
t > 0 and αk

f < 0
regulate the smoothing of the step functions (the signs are chosen in such a fashion that
missing an actual example and detecting a false alarm cause positive loss). The loss
function for the two cases is depicted in figure 3.

The total cost is now defined as the sum over all blocks for all words

L(W) =
m∑

k=1

B∑
b=1

�b
k(x,W) (42)
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which, for appropriate γk
t and γk

f , will approximate the number of errors (both misses and
false alarms, weighted accordingly). We can now update the parameters W by MCE or
GPD, which simultaneously updates both the class model parameters and the decision
thresholds.

Komori and Katagiri [10] conducted a series of phoneme spotting experiments in which
18 English language consonants were spotted in high quality speech. 16 mel-scale spectral
coefficients were input every 5 msec. and the templates were initialized by k-means clus-
tering. The spotters were all of the same size and 5 templates were used per phoneme.
The following table, adapted from [10] shows the effect of 160 epochs of MSPE training
on the test set.

phoneme misdetection(%) false alarms/hour/phoneme
before MSPE after MSPE before MSPE after MSPE

p 60.9 47.8 12.0 0.7
t 53.9 2.0 0.3 1.2
k 24.1 12.1 11.9 2.1
b 94.4 61.1 242.2 1.7
d 100.0 22.9 88.6 2.9
g 64.3 85.7 13.7 0.0

m/n 9.9 4.7 28.6 9.5
N 34.0 35.9 22.9 10.8
s 10.1 13.0 3.5 2.4
sh 100.0 4.1 5.3 1.2
h 40.9 30.3 18.8 2.3
z 7.4 29.6 13.6 0.0
dj 18.6 20.9 5.3 1.4
w 25.0 25.0 25.1 1.3
r 58.1 21.4 17.4 2.6
j 56.3 28.7 11.6 3.7
ts 100.0 38.5 0.0 0.0
ch 14.8 25.9 21.0 1.1

Table Results of Komori and Katagiri for phoneme spotting.
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6 Conclusions

The basic philosophy behind the MCE approach is that a classifier should be trained using
a criterion which is as similar as possible to that actually used in verifying its worth –
usually the percentage of errors it makes. Thus MCE is more theoretically consistent than
ad hoc training criteria such as minimum squared error. However, in addition to this
theoretical advantage, there are several practical reasons for considering MCE training.

• The MCE/GPD approach provides a systematic procedure for deriving smooth cost
functions. Thus any classifier for which a MCE-compatible discriminant can be
defined can be trained using gradient descent techniques.

• Results of proper employment of MCE/GPD techniques to speech recognition prob-
lems have been shown to have significantly better performance (ten to fifteen percent
in typical cases).

• Retrofitting of MCE to existing systems usually requires only minor adjustments.
The actual running of the classifier (which may have been optimally implemented)
is unaffected, only certain aspects of the off-line training are modified.

• Use of MCE on open set problems provides a method of training which utilizes all
the training set input rather than just classifiable examples. This leads to superior
false alarm rejection. In addition, optimal class dependent thresholds of spotters
can be determined.
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