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Abstract

I semi-empirically study the social networking sites such as LinkedIn.
Such sites enable users to maintain contact information of people they
know and trust (their first degree connections or friends), and to discover
the friends of their friends (their second degree connections), and to access
the friends of the friends of their friends (their third degree connections).
Connections up to some degree (e.g., third) make up a network. I find
the size of such a tree network grows sublinearly with time, even when
its owner actively seeks out new friends. Under simplistic assumptions I
find that the value of such a network to its owner is three times that of a
standard contact list (containing only first degree connection). The total
value of a network of N connections up to d degrees of separation to all

its members scales as N1+ 1

d . This is less than Metcalfe’s law that states
that the value of a fully connected network scales as N2, but more than
Odlyzko’s law where the scaling is only N log N . On the other hand, the
cost of maintaining a large network increases faster than the value, and
thus there is an optimal network size from the value point of view. Using
models I am able to estimate the average degrees of separation between
members of my network, and the size of the strongly connected cluster to
which I belong.

1 Introduction

In early 2008 I started receiving from acquaintances inviting me to join
their networks on various professional social networking sites, the most
popular being LinkedIn [9], which at the time advertised over 25 million
users (and is now quoting over 35 million). At first I ignored all such invi-
tations, assuming that most have come either from people seeking jobs or
from marketing types using these sites instead of business cards. However,
I was subsequently led to reconsider my behavior. While tracking down
prior art for a patent application I came across a reference to someone
whom I had never met, and whom I could not locate via a general In-
ternet search. A colleague performed a search on LinkedIn and promptly
produced the desired contact information.

Acknowledgements : Thanks to all my connections who provided information and suf-
fered my endless requests for assistance. Special thanks to Jonathan Levy for his help in
programming the Web-scraping tool.
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This anecdotal evidence lead me to ask whether it was possible to
quantify the value of such large social networks. Does their value result
from the fact that the tool accesses a large network or purely from the
specific capabilities of the software platform? How much more valuable is
a network of contacts than a conventional contact list, such as provided
by conventional email clients?

It is evident that the social networking platform itself has some advan-
tages, such as the fact that people update their own contact information.
Thus, when your contact changes email address or telephone number, you
need not manually update this information, or even know of the change
until you need to contact him or her. However, securely updating contact
information is surely a solvable problem, and one that probably should
not require large interconnected networks.

So I was left with the question as to whether true value is derived from
the fact that in addition to enabling access to your friends (called contacts

in most conventional tools but connections in LinkedIn terminology) the
user gains visibility to the friend’s friends (second degree connections),
and somewhat more limited knowledge of the friends’s friends’s friends
(third degree connections). This entire network of first, second, and third
degree connections is much larger than the set of friends (usually by a
factor of between 1000 to 10,000), and has recently been the subject of
interest. In order to process information in such networks, various machine
readable formats for describing a FOAF (Friend Of A Friend) have been
developed. Collections of FOAF entries have been called social graphs

[7, 6], and Tim Berners Lee has called the set of all such data the giant

global graph (GGG) [3]. Lee contends that the value of the GGG exceeds
that of the WWW.

An extremely large social network of a different kind was recently
studied by Leskovec and Horvitz [8]. They analyzed a month of commu-
nications activities of 240 million users of the Microsoft Messenger instant
messaging system. They were able to construct the graph describing users
who communicated, and found it to be richly connected, with an average
of less than seven degrees of separation between randomly chosen users.

In order to better understand the advantages of a social network, I
decided to join LinkedIn. I chose to join this particular network for several
reasons.

• it is widely used by professionals in my areas of interest,
• unlike Facebook, its use is not blocked by my company’s firewall,
• there are no undesirable instant messaging or similar features.

People who heard of my decision, gave me the benefit of their (anecdotal)
experience. In particular I was told

• the size of the network increases ”exponentially” (over time?)
• I would be able to build a network with a million connections with

two weeks,
• I would find this network an extremely valuable tool,
• acquiring and maintaining such a network entails no cost,
• I would discover that any two people in a given field of interest are

separated by no more than two or three degrees of separation,
• all 25 million LinkedIn users are somehow connected.
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I decided to investigate these ideas by carefully keeping track of my
network, as will be explained in section 2. The growth of the network,
both analytically and empirically, is found to be governed by a power law,
and not exponential. It took me over six weeks to reach a network size of
one million.

In addition to providing a compendium of information on your friends
that you can access from anywhere, the LinkedIn platform provides vari-
ous tools to make contact with people in your network, such as introduc-
tion by a friend in common. Such access can be of value when trying to
find potential collaborators or customers, when looking for a new job or
looking for a candidate for a job you need to fill, etc. However, it is clear
that not all network members are equally valuable, and thus the value of
such a network only scales weakly with the total network size. In fact,
the value of the network to me turns out to scale linearly in the number
of friends (first degree connections), and not in the network size. I discuss
value in section 3.

On the other hand, I questioned the idea that growing and maintain-
ing a valuable network are completely free. Even if LinkedIn does not
directly charge for maintaining a network, one certainly has to devote
some time and effort to its upkeep. I shall show that the cost of main-
taining a network scales quadratically in the number of friends, and thus
must eventually exceed the linearly scaling value. In section 4 I empirically
conclude that the trade-off is optimal at about F = 500 friends.

A key feature of social networks is that we can define the degrees

of separation between any two network members. This represents the
number of hops that need to be traversed between the two. Social network
sites usually define the network of a particular user as the set of all users
separated no more than some degree (e.g., 3). Thus although network
membership is symmetric (if you are in my network then I must be in
yours) it is not transitive (the friend of a third degree connection of mine
is not necessarily in my network). I often fall into a self-centered way of
thinking wherein my network is a tree emanating from me and extended to
my third degree connections. In fact there are actually many connections
between members of my network that have nothing to do with me (for
example, my friends often directly know each other as well).

When finding a nonfriend using LinkedIn’s search tools, the degrees
of separation as well as partial information as to the connections along
the path of separation are displayed. Likewise, when I view a friend’s
LinkedIn connections, friends in common are displayed first. However,
LinkedIn does not make available the information necessary to directly
deduce the degrees of separation between any two of my connections. In
section 5 I present indirect inferences regarding connectivity and degrees of
separation based on a pure tree model. I extend these results to somewhat
more general models in section 6.

Finally, I build a detailed model of how a networks grows in section 7
and compare the analytic results to simulation and to the dynamics of
my own network. From this model I was able to estimate the size of
the connected cluster in which I reside. While LinkedIn claimed over 25
million users at the time, I seem to belong to a strongly connected cluster
of only a few million people.
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2 Linking In

In order to study social networks such as LinkedIn, I conducted an ex-
periment over a period of several months, from the end of August 2008.
I was interested in understanding the growth dynamics of such networks,
the connection between the number of friends and the total network size,
and in determining the value of maintaining such a network.

It is important to note that I studied my LinkedIn network, not the

LinkedIn network. The latter is a complex graph with LinkedIn users as
nodes and bidirectional edges between users who are friends. The only
thing I know about it is the number of users (rounded to the closest five
million). It would be interesting to know the size of the largest connected
cluster, the distribution of the number of friends per user, the degrees
of separation between users, etc. However, gathering such information
would require access to LinkedIn’s database. My information was limited
to the information that LinkedIn provides to its users.

On the other hand my LinkedIn network is not simply a subgraph
of this graph. In my network there is an order relation, assigning to
every node its degree (between zero and three). Furthermore, there is an
underlying tree structure, with each node being connected to me along a
particular path or paths (see Figure 5).

A colleague who was aware of the experiment predicted that I would
reach a network size of over one million within 2 weeks. It actually took
much longer. After one week I had over 100 friends, and a network of close
to 800,000 connections. But from then on the growth slowed considerably,
and the million mark was passed only after over six weeks.

I started my network by accepting several outstanding invitations to
join LinkedIn networks. Once accepted into someone’s network I gained
access to their contact list (although you can opt to keep your contact
list confidential, in practice I found that very few people block access). I
then scanned each contact list looking for people I wished to add to my
network, and sent invitations accordingly. I never returned to rescan a
friend’s contact list afterwards. In a short time I started receiving, and
accepting, numerous unsolicited invitations as well. If the need arose, I
also used the search tools provided by LinkedIn to track down particular
people I needed to contact.

In order to build a valuable network, I only invited, or accepted invi-
tations from, people who met two criteria. The criteria were essentially
the same ones that I normally consider before opening a contact record
in my email client.

First, I had to actually know the person in question. The standard I
used here is stronger than simply recognizing someone’s name. I require
that either I have met the potential friend on multiple occasions, or if on
only on a single occasion, that we had conversed for at least one hour.

Second, there had to be some finite probability that I would need to
contact the potential contact in the future. Such decisions were typically
clear cut, but when in doubt I preferred to err on the side of letting in
a possibly low-value contact rather than blocking someone whose contact
information would be difficult to acquire later if I did end up needing it.

Note that I emphatically did not use profession as a criterion. Al-
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Figure 1: The number of second degree connections N2 as a function
of the number of friends (first order connections) N1, for N1

between 60 and 180 friends. For reference we superpose a line
with slope 76 second order connections for each first order one.

though over 95% of my network naturally turned out to belong to the
same high-tech and scientific communities as I do, I did not want to
purposely block the outliers that may provide interesting connectivity
between diverse people.

After a period of erratic initial network growth, I kept careful track of
of the number of connections of degrees one, two, and three, and the size
of the total network. In this fashion I could observe how adding a new
friend affected the size of the network. Unfortunately, not all network
growth is from my adding new friends, some is organic growth resulting
from my friends adding new friends. So after amassing 60 contacts, I
attempted for a while to grow my network as quickly as possible. In this
way I could assume that the major contribution to network growth was
from my activity, rather than from organic growth. I stopped this phase
somewhat after passing the goal of a network of one million.

The next phase was an interval of six weeks in which I did not actively
solicit addition of new friends, in order to gauge the rate of organic growth.
In practice, a few new friends appeared as a result of invitations I had
previously sent that were belated accepted.

In Figure 1 we see the number of second degree connections as a func-
tion of the number of first degree connections (friends). The points fall
nicely on a line of slope 76, meaning that most of my friends had 76 friends
of their own who were not on my list. The linear regression line does not
intersect the origin, but rather crosses the y axis at the point where zero
friends corresponds to 2724 second degree connections.

N2 = 76N1 + 2724

This is a clear indication that while we observe a straight line for this
portion of the graph, the slope is decreasing with increasing number of
friends. We will study the form of this graph in section 7.
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Figure 2: The number of third order connections N3 as a function of the
second order ones N2, for N1 between 60 and 180 friends. For
reference we superpose a line with slope 46 third order connec-
tions for each second order one. Note the jump corresponding
to the second phase of the experiment between 172 and 176
friends.

In order to ascertain how many new connections each second order
connection adds to the network, I plot in Figure 2 the number of third
degree connections as a function of the number of second order connec-
tions. For the first phase of the experiment the points fall discernibly, but
somewhat noisily, on a line of slope 46,

N3 = 46N2 + 268729

meaning that most of my second order connections had 46 friends that
were neither my friends nor previous second or third order connections
of mine. The jump discontinuity at N1 = 172 corresponds to the second
phase of the experiment, where few new friends were added. This jump
was noticeable but not very large in the previous graph, meaning that the
organic network growth was mainly from second degree (and third degree)
contributions.

To grasp the big picture, I plot the total network size N as a function of
the number of friends N1 in Figure 3. The network size is approximately
linear in the number of friends, with about 3574 connections per friend.

N = 3574N1 + 397159

Although this is a rather large slope, if I collect friends at a constant rate
of n friends per unit time (so that N1(t) = nt + n0) this will result in the
network size increasing only linearly over time.

∆N(t)

∆t
= αN1(t) + A = α n t + A′

Once I exhaust the obvious potential friends and my adding of new friends
slows, (i.e., n decreases with time) the network increase will become sub-
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Figure 3: The size of the network N as a function of the number of
first order connections N1, for N1 between 60 and 180 friends.
For reference we superpose a line with slope 3574 network
connections for each friend. Note the jump corresponding to
the second phase of the experiment.

linear. This sublinear behavior is a far cry from the predictions of expo-

nential growth.
It may be objected that this (sub)linear tendency is only characteristic

of the first phase of the experiment, when organic growth can be neglected.
The dramatic jump corresponding to the second phase demonstrates that
organic growth can be significant, and may possibly contribute to su-
perlinear growth rates. However, the dramatic jump in this depiction is
misleading. The first and second phases were chosen to be approximately
equal in time duration. During the first phase the number of friends in-
creased from 0 to 170, and the network size from 0 to a million. In the
second phase the number of friends barely increased, but the network in-
creased to about a million and a half. So, in the same time duration, the
organic growth of an already large network contributes only about half
the growth rate of active expansion up to that point.

The organic growth rate is driven by first and second degree con-
nections adding connections of their own. It thus is expected to have
contributions proportional to N1 and to N2

∆N(t)

∆t
= βN1(t) + γN2(t) + B = β′N1(t) + B′

where we have taken the linearity of N2 in N1 into account. Although in
our second phase we did not actively increase N1 in order to isolate the
contributions, were we to continue increasing N1 by n friends per unit
time, we could substitute N1(t) = nt + n0 and and would see linearly
increasing organic growth.

∆N(t)

∆t
= β′nt + B′′
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Figure 4: The size of the network N as a function of the number of first
order connections N1, for other people. Note that the data
lie along a line with slope about 10,000 with some notable
outliers.

Adding the active and organic contributions gives

∆N(t)

∆t
= αnt + A′ + β′nt + B′′ = α′nt + A′′

which is still only linear in time. Once n starts to decrease the total
growth becomes sublinear.

Of course the precise growth dynamics will vary from network to net-
work. While discussing with some of those on my contacts list, I discovered
that some had much larger network sizes N for similar contact list sizes
F = N1. As one friend of mine put it, ’you are more connected than I
am, but my connections are more connected than yours’.

To investigate how different the relationship could really be, I asked a
number of friends to send me their 4-tuple (N1, N2, N3, N) as presented
on LinkedIn’s network statistics page. Although N = N1 + N2 + N3 and
thus there are only three independent pieces of information here, it was
worthwhile asking for all four numbers for error correction purposes, as
friends would often copy the data incorrectly.

In Figure 4 I present N as a function of N1 for other people’s networks.
Indeed variability is seen, but mostly for small N1. For larger N1 the
data seems to fall along a line with slope of about 10,000 (the dashed
lines represent slopes of 5000 and 20,000). The most significant outliers
belongs to people unusual in my context, namely sales and marketing
professionals. These people professionally meet a wide variety of people
and tend to send out LinkedIn invitations to everyone they meet. Their
contact list are rich in people with huge contact lists of their own (a fact
substantiated by large N2/N1 ratios).

The arithmetic average of N1 was 528, and of N2 close to 67,000.
However, these averages were severely distorted by the long tails of these
distributions. A more representative statistic is the typical value (geo-
metric mean), which for N1 was about 90 and for N2 about 8900. The
first value is higher than the typical value in my own network of N2/N1,
namely 83; but the second is lower than the typical value of N3/N1, which
is close to 10,000.
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3 Quantifying the Value of Contact Lists

Anyone who has ever had his list of emails or telephone numbers acciden-
tally erased will attest to the value of such lists. Calling the number of
entries in the contact list F , the quantitative value V is proportional to
F . This trivially derives from the fact that if the contact information of
any specific contact is lost or becomes corrupted, the list owner will be
forced to spend time and effort, or alternatively would be willing to pay
money, to restore this information. The cost that the list owner would
be willing to incur to restore a contact’s information is equivalent to the
value assessed by the list owner to the possession of that contact informa-
tion. If each of the F entries has value v then the total cost is V = Fv,
which scales linearly with F .

This argument can be readily extended to the case where all contacts
are valuable to some degree (else, the contact should be removed from the
list) but not necessarily equally valuable. For such as case each contact
has value vi, the total value of the list is V =

∑

vi = F < v > where
< v > is the average value. Thus, once again, the value of the list scales
linearly with F .

In the LinkedIn social network, in addition to full access to N1 = F
first degree connections, one can retrieve more limited information re-
garding N2 second degree connections, and have some access to N3 third
degree connections.

Metcalfe’s law [10] states that the value of a telecommunications net-
work with N participants is proportional to N2, i.e., V ∼ N2. (I use
V ∼ N2 to indicate scaling, i.e., V = O(N2).) The reasoning behind
this rule is simple to comprehend. Metcalfe is considering the total value
of the network, i.e., the sum of the value to all participants. Since each
participant can converse with N others, the value of the network to each
scales as N , and the total value for N participants scales as N2.

Of course Metcalfe’s law makes the implicit assumption that as N
grows all the new possible pairings remain valuable. In real life, as a net-
work grows, its geographic extent and variability increases, reducing the
value to an individual of each new participant in a manner that decreases
with N .

Metcalfe’s rule is not the most optimistic valuation for a network of N
participants. Reed’s law [13] goes even further based on the premise that
in a network of N participants not only are N2 conversations possible,
but 2N possible conference calls or email lists. Thus, according to Reed’s
law, V ∼ 2N .

Andy Odlyzko and Ben Tilly [12] dispute these strongly increasing val-
uations and propose a much weaker N log N behavior. They reason that
the value’s dependence on N must be superlinear, but not too strongly so.
For any superlinear dependence, the value of two separate networks is less
than a single unified one, causing strong pressure for disparate networks
to be joined. For example, two networks of size N are separately worth
2N2, but together (2N)2 – twice as much. This joining is indeed seen in
the Internet, but many networks take too long time to merge for the N2

law to be reasonable.
The simplest argument for N log N scaling is to assume that randomly
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Figure 5: Simple tree model.

chosen connections can be described by Zipf’s law. One way of explaining
Zipf’s law is that for many naturally occurring sets of elements, if we sort
the set by decreasing value, the 2nd element will be approximately half as
valuable as the first, the 3rd element approximately one third as valuable,
and the value of the kth element will only be about 1

k
of the first. Since

the harmonic sum diverges logarithmically, the value of the network to
each participant scales as log N , and the total value as V ∼ N log N .

For a LinkedIn network, the value contributed by friends, i.e. first de-
gree connections, must scale linearly in N1, since these contacts are chosen
by the user, and are thus valuable to at least some degree. However, the
value of second degree connections is already much less, as your friend’s
brother, the hair-stylist, who lives half-way around the world, is of little
interest to you.

In section 7 I will discuss how the size of the network N depends on
the number of friends. For now, let us assume a simple tree model with
fan-out F ; wherein I have N1 = F contacts, each of whom contributes F
distinct members to my network so that N2 = F 2, and finally each of them
contributes a further F new members, so that N3 = F 3 (as in Figure 5).
For large F we can assume that N = 1 + N1 + N2 + N3 ≈ N3 = F 3

However, as mentioned above, not all members of my network con-
tribute value, and thus we expect that the value of the network to me will
scale more weakly than V ∼ N ∼ F 3. The question is how many second
and third degree connections are valuable additions to the network. This
question must be answered empirically.

When my contact list reached 100 members I performed an exhaustive
study of my second degree connections. I went through the lists of all the
non-shared connections of my connections (with the exception of three
contacts who blocked this information). While the decision as to the
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value of a second degree connection is necessarily subjective, in practice
the decisions were typically easily made. I rated as valuable a connection
that fulfilled at least one of the following criteria:

• I immediately recognized the connection’s name
• the connection and I have previously communicated more than once
• the connection and I share at least two areas of interest.

Note that these criteria are more lenient than those I use to accept some-
one into my network as a first degree connection.

In this search I found about 120 valuable second degree connections.
More interestingly, I almost always found one or two valuable second
degree connections in the list of each friend. Perhaps surprisingly, the
number of valuable connections was not greater for first degree connections
with more connections than for those with fewer (i.e., larger lists tended to
have more chaff). Thus the number of valuable second degree connections
M2 was only slightly larger than the number of first degree connections
M1 = N1 = F .

Let’s assume that each first-degree connection contributes exactly m
valuable second-degree connections. Then the number of second-degree
connections is M2 = mF . Although not directly verifiable, it would seem
to be highly improbable for a non-valuable second-degree connection to
contribute a valuable third degree connection. On the other hand, valu-
able second degree connections, although held to a looser standard than
friends, are not really that different from my first-degree connections. It
would thus seem probable for each of them to contribute about m valuable
connections to the network.

Taking these two assumptions to be true, we deduce that M3 =
m(mF ) = m2F , and

M = M1 + M2 + M3 = F + mF + m2F = (1 + m + m2)F = f3(m)F

where,

fd(m) =

d−1
∑

p=0

mp

for example,

f3(m) =

2
∑

p=0

mp =











1 m = 0
3 m = 1
7 m = 2
13 m = 3

and the value of the network to me scales like f(m)F = f(m)N1. In
our simple tree model, N ∼ N3

1 so that my valuation of my network is

V ∼ N
1

3 . This result can be readily extended to a network with d > 3
degrees of freedom, where my valuation of my network would scale as

V ∼ fd(m)F ∼ N
1

d .
Of course, this is my valuation of the network, that is, the value of the

network to me. On the other hand, members of my network find value
in their friends, and some value to all their connections including myself.
Assuming that their situation is not too different from mine, each of the

N members of my network also finds value V ∼ N
1

d in their respective
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networks. hence, the total value of the network for all N members is N

times the value for each, which thus scales as N1+ 1

d .
For simple contact lists d = 1 and thus the total network value V ∼ N2

as required by Metcalfe’s law. For networks such as LinkedIn d = 3, so

that V ∼ N
4

3 . This is weaker than Metcalfe’s law V ∼ N2, but stronger
than Odlyzko’s law V ∼ N log N .

4 How Linked In Should You Be?

In the previous section we saw that the value to me of my network in-
creases linearly in the number of friends, V = αF . If the value of my
network increases with its size, then why am I not motivated to grow my
network without limit?

Although LinkedIn does not charge for using the basic service, there
are nonetheless indirect costs to maintaining a large network. For exam-
ple,

• any of my friends may ask me for an introduction to another of my
friends; since the number of pairs of friends is (in the tree model
with fan-out F ) approximately F 2, the probability of this occurring
is βF 2 for some small β,

• second degree connections who discover me on the connection list
of a friend in common may ask me to join their network. This
frequently happens even if this second degree connection does not
meet the criteria I use for adding new friends them to my network.
Since the number of second degree connections is F 2 (and while I
only consider mF of them valuable additions to my network, any of
the F 2 may consider me valuable additions to their network), the
probability of this happening is γF 2 for some small γ.

Although the probabilities of each of these events is small, it takes me some
time and effort to respond to them, and their cost to me is proportional to
their combined probability (β + γ)F 2, which, being quadratic in F , must
at some point pass the linearly increasing value V = αF .

Unfortunately, there does not seem to be any direct way of directly
estimating the constants α, β and γ. In order to better understand the
tradeoffs involved I approached my friends and asked them how useful
LinkedIn was to them as a tool, and how much effort they expend on its
upkeep. I sorted the responses according to the size of the friends network.

I did not bother asking connections with fewer than 50 connections,
since these were deemed to be casual users who do not put significant effort
into their network, nor would they be likely to see it as very valuable.

The group of friends with 50-200 friends of their own almost unani-
mously reported that the value of their networks far exceeds its any main-
tenance costs. In fact, almost all were quite surprised to hear me mention
any costs at all.

On the other hand, people with huge networks of over 700 friends
almost all reported that the upkeep costs were excessive. Several remarked
that they were no longer actively updating their account information.

Some typical responses were :
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• people are queued up waiting for me to accept their invitations,
• I haven’t been taking care of my LinkedIn network, I am too busy

with Facebook and MySpace,
• sorry for taking so long to accept your invitation, I get so many that

I only process them once a month,
• too many people are asking me to join to get access to my contacts,
• I have to do something for someone twice a week, but only use it

myself every few months,
• I have stopped accepting invitations - there are too many job seekers

out there.

People with between 200 and 700 friends seem to divided about half
and half. Some put a lot of time into keeping building their profile and
keeping it up to date, while others cut and paste something once and have
since forgotten about it. When questioned specifically as to how often they
retrieve useful information from the network versus how frequently they
are asked to take some action for someone else, the numbers ranged from
twice a week to it’s only happened a few times for both questions. We
can surmise that the optimal size is somewhere around F = 500. Under
that, the upkeep costs are small and useful information can be retrieved
relatively inexpensively. Over that, the maintenance costs become exces-
sive, and people that well connected apparently have alternative ways of
getting the needed information.

 0  100  200  300  400  500  600  700  800  900  1000

Figure 6: Histogram of the number of friends for each of my friends. For
small numbers of friends the distribution decreases linearly in
F , but for large numbers it follows a (long-tailed) power law.

Another way of testing our conclusion is to check the distribution of
the number of friends for all my LinkedIn friends. This information is
easily retrieved from my connections list for those friends with fewer than
500 contacts. For those with over 500 contacts LinkedIn states ‘500+’ on
that page, so I had to actually visit their contact pages. For those with
block contact lists I needed to email them requesting their information.

Figure 6 depicts the histogram of number of friends for 190 of my
friends. For friends with small to intermediate networks (less than 250
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friends) the histogram is approximately as linearly decreasing. For larger
networks the distribution is long-tailed (in the figure I somewhat arbitrar-
ily use the F−2 power law). While there is insufficient data to be able
to accurately determine the exponent of the power law, it is clear that
the behavior is that of a scale-free network [2] rather than exponential
decrease of a random network [4].

The remarkable feature here is the clear existence of delineated regimes.
The linear decrease occurs in the realm where value exceeds cost, and thus
people are motivated to continue adding friends to their networks. The
power law decrease is in the regime where the cost exceeds value. In be-
tween these two is a noticeable (and statistically significant) bump in the
histogram corresponding to more than expected friends of mine having
between 400 and 500 friends of their own. This overabundance comes at
the expense of fewer than expected friends having contact lists with 550 to
750 contacts. The existence of the regimes and the bump lend credence to
our conclusion that there is a cross-over somewhere in the neighborhood
of 500 contacts.

5 Degrees of Separation

It is of great interest to know the number of degrees of separation between
two members of my network. Milgram’s six degrees of separation rule (also
known as the small world phenomenon) [11] states that anyone is at most
six degrees of separation from anyone else on the planet. Milgram did
not invent the number six. The first to state six degree of separation
concept was Frigyes Karinthy (1887-1938), the Hungarian author, play-
wright, poet, and journalist. Karinthy believed that the modern world was
shrinking in the sense that technology was making social distances much
smaller than physical distances. In a short story entitled Chain-Links

in his 1929 volume of short stories Everything is Different his characters
conjecture that any two individuals could be connected through at most
five acquaintances.

While six degrees of separation has become popularized for any two
humans, people working in the same narrow field of international interest
are probably much closer than that. One well-known case is that of Erdös

numbers [5] that have become entrenched in the mathematician’s folklore.
Paul Erdös (1913-1996) wrote over 1,400 mathematical research papers
with over 500 co-authors. Erdös himself is given Erdös number 0, and his
co-authors (including Odlyzko whose law was mentioned in section 3) have
Erdös number 1. Co-authors of people with Erdös number 1 (who are not
Erdös nor have written a joint paper with Erdös) have Erdös number 2,
and so on recursively. Anyone not on the Erdös collaboration graph has
an infinite Erdös number. My own Erdös number is apparently 5 through
three different paths. Most active mathematicians have relatively low
Erdös numbers (i.e., few degrees of separation from Paul Erdös) and are
even closer to randomly chosen active mathematicians [1].

By construction, I am never further than three degrees of separation
from anyone in my LinkedIn network of first, second, and third degree
connections. However, two people in my network may be up to six degrees
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of separation from each other, three from the first person to me, and three
back to the second person.

What is the average distance between any two members of my net-
work? In a pure tree model with large F , the great majority of network
members are third degree connections, and a randomly picked pair of them
will mostly likely be separated by the full 6 degrees. However, for finite
F the average separation will be smaller.

Let’s define the average separation < d > as the expectation of the
separation when we pick two network members i and j at random. This
will be the same as finding the expected number of degrees of separation
< di > of a randomly chosen member j from a given i, averaged over all
possible i.

< d > =
1

N(N − 1)/2

∑

i6=j

dij

=
1

N(N − 1)

∑

i<j

dij

=
1

N

∑

i

1

N − 1

∑

j

dij

=
1

N

∑

i

< di >

Let us assume that the network is a tree with fan-out F . From sym-
metry it is clear that all i of the same depth k on the tree will have the
same < di >. Thus rather than averaging over all i to find < d >, we
need only perform the weighted average over all depths.

< d >=
1

F 3 + F 2 + F + 1

∑

k

Nk < dk >

This significantly reduces the analysis effort required to find the desired
average.

The degrees of separation between two nodes on our network tree
depend on the depths of the two nodes, and the depth of their (borrowing
terminology from family trees) Most Recent Common Ancestor (MRCA).
In Table 1 I give all the information required to calculate the average
degrees of separation between two nodes on a network tree. The first
column contains the depth k of the node for which we want to calculate
< dk >. The second column lists the depth of the node to which we want
to find the degrees of separation. In general there will be several rows
for each such depth, differentiated by the depth of the MRCA. The third
column gives the number of such second nodes, and the final column gives
the degrees of separation. Note that each pair of nodes appears twice in
the table.

In order to calculate < dk > we need to average over all rows belonging
to a given first column, of the fourth column weighted by the third column.
Next, we need to divide by the total number of nodes on the tree excepting
the present one.

d0 =
1

F 3 + F 2 + F

(

3F 3 + 2F 2 + F
)
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from to MRCA number separation

0 1 0 F 1
2 0 F 2 2
3 0 F 3 3

1 0 0 1 1
1 0 F − 1 2
2 1 F 1

0 F 2
− F 3

3 1 F 2 2
0 F 3

− F 2 4
2 0 0 1 2

1 1 1 1

0 F − 1 3
2 1 F − 1 2

0 F 2
− F 4

3 2 F 1
1 F 2

− F 3

0 F 3
− F 2 5

3 0 0 1 3
1 1 1 2

0 F − 1 4
2 2 1 1

1 F − 1 3
0 F 2

− F 5
3 2 F − 1 2

1 F 2
− F 4

0 F 3
− F 2 6

Table 1: The degrees of separation from a node of given depth on a tree
to another. The MRCA is the Most Recent Common Ancestor,
i.e., the deepest node through which the path of separation
passes.

d1 =
1

F 3 + F 2 + F

(

4F 3 + F 2 − 1
)

d2 =
1

F 3 + F 2 + F

(

5F 3 + 2F 2 − F − 2
)

d3 =
1

F 3 + F 2 + F

(

6F 3 + 3F 2 − 3
)

Finally, the average degrees of separation is the weighted average over
all depths k of < dk >.

< d > =
1

(F 3 + F 2 + F + 1)

(

d0 + Fd1 + F 2d2 + F 3d3

)

(1)

=
1

(F 3 + F 2 + F + 1)(F 3 + F 2 + F )

(

6F 6 + 8F 5 + 6F 4
)

We depict this as a function of fan-out F in Figure 7.
For F = 1, we have the value 5

3
. This is because for this case the node

with depth 0 and the single node with depth 3 both have one node with
each of the degrees of separation 1, 2, and 3, for an average of 2. While the
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Figure 7: The average separation distance between two members of a
tree network < d > as a function of the fanout F .

2 nodes of depth 1 and 2 have two nodes with one degree of separation,
and one with 2 degrees of separation, for an average of 4

3
. Thus the overall

average is half of 2 + 4
3 , i.e., 5

3 .
As expected, as F → ∞ we see that the average degrees of separation

approaches 6. This means that the pure tree model predicts that although
my connections are all on LinkedIn, and although they are all no more
than three degrees of separation from me, they are just about as far from
each other as any two people on the planet.

6 Jumping Off the Tree

The above calculations assumed a pure tree network. This can not really
be the case for my LinkedIn network. When I look at my contact’s con-
nections I almost always see first a list of shared connections, meaning
that my connections are themselves connected. This means that there are
cross-links that break the pure tree model, and I am led to ask whether I
can predict the degrees of separation in a more general setting.

If the probability of two of my friends having a friend in common is not
too large, then a perturbed tree model is reasonable. Such a perturbed
structure is still based roughly on a tree with fanout F , but between nodes
of depth 1 (my friends) the probability of a cross-link connection is p1.

Before recalculating the average degrees of separation for such a model,
I need to find p1. I did this by scraping the LinkedIn web site, as described
in Appendix A. I did this when my contact list consisted of 180 contacts,
but I neglected those with blocked contact lists or with fewer than 30
contacts on their lists. This left me with 144 friends, of which I could
check 144 ∗ 143/2 = 10, 2960 pairs. 3,515 of these pairs of friends had
friends common other than myself, giving very close to p1 = 1

3
.

While putting in the effort of collecting this information, I decided to
compute in addition the overlap between the contact lists of two friends. I
define the overlap between two friends i and j, as the number of contacts
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Figure 8: Logarithmic display of the histogram of overlap between mem-
bers of my network.

they have in common (not including myself) Fij divided by the smaller of
the number of friends i has or j has (once again, not including myself).

Oij =
Fij

min(Fi, Fj)

A histogram of these overlaps is displayed on a logarithmic scale in Fig-
ure 8. The overlap decreases from two thirds of the pairs with zero over-
lap, to less than a fifth of a percent with overlap over 1

2
. There is a slight

overtendency for overlaps to be around 1
3 .

The detailed information gathered by scraping my LinkedIn network
can be used for further studies, such as blind determination of relation-
ships between people. Anecdotally, I discovered that two friends of mine
with a surprisingly high overlap had once worked together. It is simple to
define a distance measure between two members of my network based on
the overlap, and to perform clustering and cladistic analysis of this data.
Such an analysis is in its early stages and will be described elsewhere.

Now we can reperform the calculation that lead to Equation 1 taking
cross-link connections into account. The simplest topology that we can
study is based on the pure tree model, but augmented with cross-links
between friends with probability p1 = 1

3
. This is the only model for which

we have access to the probabilities, since one can not scrape from LinkedIn
information regarding the probability of cross-links between higher degree
connections. In addition, the probability of such higher degree cross-links
will undoubtedly be much lower.

Repeating our computation is straightforward. The intermediate re-
sults are presented in Table 2 and the average degrees of separation from
connections at the different depths are easy to find.

d0 =
1

F 3 + F 2 + F

(

3F 3 + 2F 2 + F
)

d1 =
1

F 3 + F 2 + F

(

(4− p1)F
3 + F 2 − (1− p1)

)
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from to MRCA number separation

0 1 0 F 1
2 0 F 2 2
3 0 F 3 3

1 0 0 1 1
1 x p1(F − 1) 1
1 0 (1 − p1)(F − 1) 2

2 1 F 1
x p1(F

2
− F ) 2

0 (1 − p1)(F
2
− F ) 3

3 1 F 2 2

x p1(F
3
− F 2) 3

0 (1 − p1)(F
3
− F 2) 4

2 0 0 1 2
1 1 1 1

x p1(F − 1) 2
0 (1 − p1)(F − 1) 3

2 1 F − 1 2

x p1(F
2
− F ) 3

0 (1 − p1)(F
2
− F ) 4

3 2 F 1
1 F 2

− F 3

x p1(F
3
− F 2) 4

0 (1 − p1)(F
3
− F 2) 5

3 0 0 1 3
1 1 1 2

x p1(F − 1) 3
0 (1 − p1)(F − 1) 4

2 2 1 1
1 F − 1 3

x p1(F
2
− F ) 4

0 (1 − p1)(F
2
− F ) 5

3 2 F − 1 2
1 F 2

− F 4
x p1(F 3

− F 2) 5

0 (1 − p1)(F
3
− F 2) 6

Table 2: The degrees of separation from a node of given depth to an-
other, when there is the probability of c1 of cross-links between
nodes of depth one. Paths passing through a cross-link are
identified by an ’x’ in the MRCA column.

d2 =
1

F 3 + F 2 + F

(

(5− p1)F
3 + 2F 2 − F − (2− p1)

)

d3 =
1

F 3 + F 2 + F

(

(6− p1)F
3 + 3F 2 − (3− p1)

)

Finally, the average degrees of separation between any two connections
is the weighted average over all depths k of < dk >.

< d >=

(

(6 − p1)F
6 + (8− p1)F

5 + (6 − p1)F
4 + p1F

2 + p1F
)

(F 3 + F 2 + F + 1)(F 3 + F 2 + F )
(2)

Note that for p1 = 0 we return to equation 1 as required. We depict the
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Figure 9: The average separation distance between two members of a
perturbed tree network < d > as a function of the fanout F
for three probabilities of first degree cross-links, p1 = 0 (un-
perturbed tree), p1 = 1

3
(the observed value in my network),

and p1 = 1
2
.

degrees of separation as a function of fan-out F in Figure 9 for p1 = 0 (the
pure tree model), p1 = 1

3
(the observed value for my network), and for

p1 = 1
2 (the highest value for which it is still sensible to call the structure

a perturbed tree).
As we can see, the degrees of separation indeed declined due to the

cross-links, but not by very much. In fact, it is easy to deduce from
equation 3 that as F → ∞ the average degrees of separation approaches
6 − p1. This is not surprising as for large F , most of the connections in
the network are at depth 3 and separated from each other by either 6
or 5 degrees of separation. The probability of the latter is p1, so that
< d >= 6(1− p1) + 5p1 = 6 − p1.

So the tree perturbed by cross-links between friends only has the po-
tential of reducing the average degrees of separation of a large network
from 6 to 5 1

2
. The next step would be to allow cross-links between second

degree connections, and between friends and second degree connections.
While higher degree connections are less likely to know each other and
thus have cross-links with lower probability, the cross-links that do exist
have more potential of reducing < d >. In fact, if there are a sizeable
number of cross-links between third degree connections, then < d > will
be close to 1.

We have no direct way of estimating the probability of there being
cross-links of these types, but if p1 is small enough so that our tree model
is meaningful, arguments similar to those of Section 3 lead us to believe
the probability of two second degree connections being friends is p2 = p2

1.
The probability of cross-links spanning the first and second degrees would
presumably be something in between.

Actually, we were somewhat hurried in concluding that the probability
of a link between any two second degree connections would be p2

1. Of the
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F2(F2−1)
2

pairs of second degree connections, F F (F−1)
2

share MRCA of
the first degree, and thus would be expected to have a cross-link with

probability p1! This leaves F3(F−1)
2

pairs with probability p2
1 so that the

average probability is p2 =
p1+Fp2

1

F+1
. So far large F it is indeed true that

p2 ≈ p2
1.

In similar fashion we expect for large F for the probability of cross-
links between two third degree connections to be p3 = p2

2 = p4
1. For large

F we can neglect all other cross-links and all pairs of connections except
those whom would have been at separation 6 in the pure tree model.
These connections are directly connected, and thus at separation 1 with
probability p4

1, and otherwise at separation 6.

< d >= (1− p4
1) · 6 + p4

1 · 1 = 6 − 5p4
1 (3)

For p1 = 1
3

this works out to be about 5.94, although it is lower for finite
F .

So higher degree cross-links are even less effective at reducing < d >
than cross-links between friends. Even taking both effects together would
not reduce the average value to less than 5. Perturbed tree models do not
lead to low numbers of degrees of separation.

7 Growing the network

Leskovec and Horvitz [8], having access to the raw data of their network,
were able to discover that 99.9% of the 180 million nodes belong to the
largest connected component. In this section I’ll attempt to indirectly
deduce the size of the connected component in which my network resides,
based on the very partial information retrievable from LinkedIn.

In the previous section we saw the consequences of deviating from
a pure tree model. A more radical deviation from the tree model is a
random IID bond model wherein we assume that there are N registered
LinkedIn users, between every pair of which there is a link with some
probability p. This means that on average each user has p(N − 1) friends,
and that there are about pN(N −1)/2 friendship relationships in the net-
work. A well-known theorem of Erdös and Rényi theorem [4] states that
in large random graph of N nodes with probability p for edges between
any two nodes, if the probability p exceeds c

N
, then there is single con-

nected component containing O(N) of the nodes, and no other connected
component has more than O(log N) connections. Translated into social
network language this states that if the users choose friends at random,
then if on the average each user has more than one friend, then there is
a giant connected component with a finite percentage of all users, and all
other connected components are local cliques uninterested in the rest of
humanity. Furthermore, Erdös and Rényi proved that the typical degrees
of separation between two users scales as the logarithm of N .

However, the assumption that any two LinkedIn users have the same
probability of being friends is as unrealistic as the pure tree model. Barabasi’s
approach [2] is more appropriate as it describes dynamically growing net-
works, and preferential connectivity between nodes. It may be appropriate
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for description of the full LinkedIn network, but does not seem to properly
capture the features of my personal network.

In this section I take a different approach. I incrementally grow
my connection tree, assuming that there are a finite number of poten-
tial connections N from which to grow it. At the stage when I have
amassed k friends I will call the total number of connections in my net-
work N(k), and the number of first, second, and third degree connec-
tions N1(k) = k, N2(k), and N3(k) respectively. I call the number of
second degree connections gained by adding the kth friend n2(k), i.e.,
N2(k) = N2(k − 1) + n2(k). Similarly, the finite difference of N3(k) is
called n3(k), so that N3(k) = N3(k − 1) + n3(k).

I assume that before I start growing my tree everyone else in the
network has already chosen F friends, and call the probability of any any
specific user having another user as a friend p = F

N
.

I start growing my network by choosing a first connection. This gives
me N1(1) = 1 first degree connections, and N2(1) = n2(1) = F second
degree connections. When I choose my second connection (different from
the first), I have N1(2) = 2 first degree connections, but somewhat fewer
than 2F second degree connections. In fact, the probability that any
one of my second connection’s connections was also chosen by my first
connection is the ratio of his number of connections to the number of
users in the network, i.e. F

N
= p. Thus the probability that it was not one

of his connections is 1−p, and the expected number of new connections of
the second degree is n2(2) = F (1−p). So the total number of connections
of the second degree is N2(2) = N2(1)+n2(2) = F +F (1− p) = 2F − pF ,
indeed slightly less than 2F . I neglected the possibility that my first friend
is also a friend of my second friend, but assuming F >> 1 this will not
significantly change the results.

Now, adding a third (different) connection brings me to n1(3) = 3,
but the probability of overlap with either of the first two connections is
N2(2)

N
, so that

n2(3) = F (1 −
N2(2)

N
)

= F{1 −
F

N
(1 − p)} = F{1 − p(1 − p)}

= F (1 − 2p + p2)

and

N2(3) = N2(2) + n2(3)

= F (2 − p) + F (1− 2p + p2)

= F (3 − 3p + p2) .

In like fashion

n2(4) = F (1 − 3p + 3p2 − p3) N2(4) = F (4− 6p + 4p2 − p3)

n2(5) = F (1 − 3p + 3p2 − p3) N2(4) = F (4− 6p + 4p2 − p3)

and in general, the total number of second degree connections after adding
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k connections is

N2(k) = F

(

k −

(

k

2

)

p +

(

k

3

)

p2 − . . . ± pk−1

)

= F
1

−p

(

k(−p) +

(

k

2

)

(−p)2 +

(

k

3

)

(−p)3 + . . . (−p)k

)

= F
1

−p

(

−1 + (1− p)k
)

= F
1 − (1 − p)k

p

= N
(

1− (1− p)k
)

For small p and k this reduces to

N2(k) = N (1− (1− kp)) = Nkp = Fk

which is linear in k with slope equal to F as expected. On the other hand,
were k to grow to become very large, N2(k) would start leveling off, since
the probability of second degree connections having friends in common
becomes large.

We can apply this same technique to the transition from second degree
connections to third degree ones. After I add my kth friend, I have N2(k)
second degree connections, each of whom picks F friends. However, be-
cause of the overlap, this results in fewer than N2(k)F new third degree
connections. It is easy to see that

n3(k) = N2(k)F

(

1 −
N1(k) + N2(k) + N3(k − 1)

N

)

= N
(

1− (1− p)k
)

F

(

1−
k + N

(

1 − (1 − p)k
)

+ N3(k − 1)

N

)

which taken along with N3(k) = N3(k − 1) + n3(k) gives a rather compli-
cated recursion for N3(k).

However, for large F we can neglect k and N2(k) as compared to N3(k),

n3(k) = N2(k)F

(

1−
N3(k − 1)

N

)

so that N3(k) relates to N2(k) in the same way that N2(k) relates to
N1(k) = k.

In order to check the approximations, I simulated the behavior of a
small network. My simulated environment consists of 65,536 users (each
user is given a 16-bit identifier). I initialize an array of length 65,536 that
represents the degree of each user in my tree by entering a suitably large
number in each position. The fanout was chosen to be F = 64.

I choose friends one at a time by randomly selecting a 16-bit number,
and entering the value 1 in the array of 65,536 users. Each of these
friends randomly selects F = 64 friends (my second degree connections)
by randomly choosing F 16-bit numbers, and entering the value 2 in
the array, unless there is already a 1 there. Each of my second degree
connections chooses F = 64 friends (my third degree connections) at
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Figure 10: The results of network growth simulation. The graph depicts
the number of second degree connections N2(k) as a function
of the number of friends k, for k from 1 to 64. Note the slight
deceleration of growth as compared to linear growth expected
for the infinite network case.
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Figure 11: The results of simulating network growth. The graph depicts
the total number of connections N1(k) + N2(k) + N3(k) as a
function of the number of friends k, for k from 1 to 64. Note
the strong leveling off of growth due to finite network size.
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Figure 12: The results of simulating network growth. The graph depicts
N2(k) vs. N1(k) = k, and N3(k) vs. N2(k) on a logarithmic
scale as compared to the expected curve.
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Figure 13: Finding NLI by matching the predicted growth curve. The
graph depicts N2(k) vs. N1(k) = k and N3(k) vs. N2(k) on
a logarithmic scale as compared to the expected curve. In
this graph NLI = 2, 000, 000.

random and enters a 3 into the array, unless the value already in that
position is less than 3. Finally, I scan the array counting how many 1s,
2s, and 3s are present. I repeat this procedure for between 1 and 64
friends.

Figure 10 depicts the number of second degree connections (i.e., num-
ber of entries in the array with value 2) as a function of k, for k between
1 and 64. Were there an infinite number of users we would expect this to
be a linearly increasing function, with 64 new second degree connections
for each new friend, and 642 = 4096 second degree connections at the end.
The actual behavior displays a slight deceleration of growth in comparison
with the superposed straight line.

Figure 11 depicts the total network size (i.e., number of entries in the
array with value less than or equal to 3) as a function of k, for k between
1 and 64. For an infinite number of users we would expect

N3(k) = N1(k) + N2(k) + N3(k) = k + kF + kF 2 = k(1 + F + F 2)

which for k = 64 would reach N3(64) = 64 + 642 + 643 = 266, 304. Ob-
viously the effect of there only being 65,536 possible connections is very
pronounced.

Figure 12 depicts both the number of second degree connections as a
function of the number of first degree connections (from Figure 10) and
the number of third degree connections as a function of the number of
second degree ones. The similarity of behavior of N3(k) vs. N2(k) as
compared to N2(k) vs. N1(k), is evident. In addition, I include

65536

(

1 −
(

1 −
64

65536

)k
)

as a continuous line. The match is relatively good, but the logarithmic
scale hides the fact that the simulation falls detectably below the pre-
diction for large k. This shows that the assumptions break down in this
regime.

Having strengthened my confidence in the reasonableness of the ap-
proximations in the above analysis, I can now apply the results to the
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data from my LinkedIn experiment. According to the theory, Figure 1
and Figure 2 should both be small portions of a single graph representing
the growth of a network with a maximum number of potential members
NLI .

NLI

(

1 −
(

1 −
F

NLI

)k
)

We determined F in section 2 to be about 78, all we need now is to perform
a best fit of our data to find NLI . The result, depicted in Figure 13, is
that NLI is surprisingly low, on the order of a few million at most. This
is much lower than the advertised 25 million registered LinkedIn users.

There are several possible explanations for this discrepancy. First, my
network may indeed be contained in a connected cluster of only a few
million users. This is possible as I mainly invited or accepted invitations
from people in one of my fields of interest, and did not pro-actively search
for people far removed from these fields. Second, connectedness is defined
only up to three hops, while fourth and higher degree connections are
not considered in the LinkedIn framework. Third, the technique used to
ascertain NLI is not really able to determine the size of connected clusters.
It estimates instead the size of the strongly connected cluster, neglecting
isolated links that were not taken. In addition, the model is not being
sensitive to links of my connections that I am not likely to use, further
reducing the effective size.

8 Concluding remarks

Interestingly, my semi-empirical study proved all the tips given to me to
be incorrect.

I was told that my network would increase ”exponentially”. Even were
I able to keep up adding some number of friends per day, the network only
grows linearly over time. Once I have most of my friends in my network,
the network growth slows considerably to the organic growth rate which
is sublinear in time. This result becomes even more reasonable when it
is realized that the network size is already on the order of the size of it
embedding connected cluster.

I was told that I would have a million connections in two weeks. It
took about three times as much time (although others have told me that
it took them much less). Even after a year I had not attained the two
million mark.

I was told that I would find this network an extremely valuable tool.
The value turns out to be only linear in the number of friends, albeit with
a proportionality constant above 1. So while social networks are more
valuable than simple contact list, they scale much more slowly in total
network size than other types of networks. After a year of use, I find that
I only use it once every week or two.

I was told that acquiring and maintaining such a network entails no
cost. It turns out that the maintenance cost increases more rapidly with
network size than the value, and that above about 500 friends maintaining
the network becomes time consuming and cumbersome. After a year I find
that I need to service requests (mostly invitations from people I turn down
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due to not meeting my criteria) at about the same frequency as I exploit
LinkedIn for my own needs.

I was told that any two people in any of my fields of interest would
be separated by no more than two or three degrees of separation. If tree-
based models (natural for this kind of network) are to be believed, the
degrees of separation between two randomly chosen people in my network
are close to the maximum of 6, which incidentally is the value quoted as
the separation between any two randomly chosen people. On the other
hand, the network statistics I could gather does not match other models,
such as random graphs or scale-free networks.

I was told that all 25 million LinkedIn users are connected (i.e., that
there exists a single giant cluster to which essentially all users belong). In
practice, my network seems to reside in a connected cluster of only a few
million, from which I could not break out.
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A Parsing LinkedIn Data

Computing the probability that two LinkedIn connections are themselves
connected is not as easy as it seems. The idea is to retrieve and parse
the connection lists of all friends and to look for duplicates. Retrieving
web pages and extracting information from them is commonly called web

scraping.
However, LinkedIn presents a challenge to web scrapers as it is based

on AJAX (Asynchronous JavaScript and XML) programming. Viewing
the source page of AJAX sites in the usual fashion reveals the Javascript
source code, not the desired information. It is not difficult to retrieve the
source of the HTML page as viewed, but the method to do so is browser
dependent. Internet Explorer users viewing an AJAX generated page need
only jump to the following address:

javascript:’<xmp>’%20+%20window.document.body.outerHTML+%20’</xmp>’

in order to dump the raw data to the screen for scraping.
The first thing one needs to know is that LinkedIn assigns a numeric

key that uniquely identifies each user. You can readily see the key of any
of your friends by jumping to that friends profile from your connection
list. Look at the profile page’s URL, it will be of the form:
http://www.linkedin.com/profile?...key=xxxxxxxx....

and that connection’s key is readily seen. Finding you own key is a bit
trickier. One way is to go to any of your pages such as your profile or
connection list, dump the raw format as described above, and search for
the string key=.

Now from the my contacts page:

http://www.linkedin.com/connections?trk=hb_side_connections

I can easily produce a list of all my contacts, their numeric keys, and
the number of contacts they have. I can then form the URLs of the pages
with their contacts, which are all of the form:

http://www.linkedin.com/profile?viewConns=&key=xxxxxx&split_page=n

with 60 contacts per page.
The program I used to automate this process is called linkscraper.

The program starts with my contact list and extracts the keys of all of
my friends. It also observes how many friends each friend has. After
performing these steps, linkscraper creates the URLs of the contacts list for
each friend, visits each of these links, dumps their raw format, and extracts
the numeric keys of their connections (my second degree connections).
The program then sorts the connections belonging to each friend creating
a sorted list of numeric keys for each of my connections. It is now a simple
matter of looping over every two different connections and checking if the
two files had a numeric key in common. In addition, linkscraper calculates
the number of connections in common between any two friends, building
a triangular array that can be later analyzed in various ways.
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[5] The Erdös Number Project, online at http://www4.oakland.edu/enp/.

[6] Brad Fitzpatrick and David Recordon, Thoughts on the Social Graph,
online at http://bradfitz.com/social-graph-problem/.

[7] Alex Iskold, Social Graph: Concept and Issues, online at
http://www.readwriteweb.com/archives/social graph concepts and issues.php.

[8] J. Leskovec and Eric Horvitz, Planetary-Scale Views

on a Large Instant-Messaging Network, online at
http://www.cs.cmu.edu/ jure/pubs/.

[9] About LinkedIn, online at http://www.linkedin.com/static?key=company info.

[10] B. Metcalfe, Metcalfe’s Law: A network becomes more valuable as it

reaches more users, Infoworld, Oct. 2, 1995.

[11] S. Milgram, The small-world problem, Psychology Today 1: 61-67,
1967.

[12] A. M. Odlyzko and B. Tilly, A refutation of Metcalfe’s Law and a

better estimate for the value of networks and network interconnections,
online at http://www.dtc.umn.edu/ odlyzko/doc/networks.html.

[13] D. P. Reed, Weapon of math destruction: A simple formula explains

why the Internet is wreaking havoc on business models, Context Mag-
azine, Spring 1999.

29


