5G Core and Service Based Architecture
This time we will discuss the mobile core functionalities.

In all networks we differentiate between user (Data, forwarding) plane and the control (and/or management) plane.

In mobile networks we further split the control plane into strata: Access Stratum and NonAccess Stratum.

The AS is the signaling between the UE and the base station (NB, eNB, gNB) and deals with all the aspects of the air interface.

The NAS is between the UE and the core (in 4G with the MME) and handles establishing sessions and maintaining continuity as UE moves.
Bearers

In reading standards you will come across the term *bearers* although we won’t need it here.

In the physical layer we talked about *channels*.

In higher layers we talk about *bearers*.

A bearer is a transparent connection between UE and DN.

We differentiate between:

- data (user plane) bearers
- signaling (control plane) bearers, which can be AS or NAS bearers.

For example, on the air interface, we distinguish 3 types of signaling bearers:

- Signaling Radio Bearer 0 (SRB0)
 - AS messages over **Common Control logical CHannel**

- Signaling Radio Bearer 1 (SRB1)
 - NAS messages over **Dedicated Control logical CHannel**

- Signaling Radio Bearer 2 (SRB2)
 - high priority AS messages over **DCCH logical channel**
The **Access Stratum** only controls the air interface and thus only the connection between the UE and one base station.

The highest layer of the AS is called **Radio Resource Control**.

RRC messages include:
- system information broadcast (MIB, SIBs)
- information for idle UEs (cell selection parameters, neighboring cell info)
- emergency broadcast messages (Earthquake and Tsunami Warning System)
- paging
- connection establishment/modification/release
- UE state (idle/connected) handling
- handoff management (including security handling)
- radio configuration (ARQ configuration, HARQ configuration, etc.)
- assignment/release of user RBs
- QoS control
- recovery from radio link failure
- measurement configuration and reporting
NAS messages

The **NonAccess Stratum** controls the connection between the UE and the core independent of the serving base station.

NAS messages include:

- **identity management**
 - identity request and response
 - authentication request and response
- **session management**
 - session (PDN connection) request and response
 - session detach request and response
- **mobility management messages**
 - tracking area update
 - mobility attach request and response
 - mobility detach request and response
Cores from 3G to 4G-CUPS

3G data the Nb+RNC connect to the SGSN and GGSN
SGSN and GGSN handle both data and control

4G Nb+RNC were unified into the eNB
eNB connects to S-GW and P-GW
Mobility management was separated

4G CUPS (R14) separates into UPF and CPFs
S-GW-C and S-GW-U, P-GW-C, P-GW-U
Cores from 4G-CUPS to 5G

5G

- decomposes the MME into AMF and SMF
- unifies S-GW-U and P-GW-U (and TDF) into UPF(s)
- unifies S-GW-C, P-GW-C and MME session management into SMF
5G RAN architecture with CUPS
5G core (simplified)

Authentication **S**erver **F**unction
Access & **M**obility Management **F**unction

Unified **D**ata **M**anagement
Session **M**anagement **F**unction
Policy **C**ontrol **F**unction
User Plane **F**unction

Application **F**unction
Data **N**etwork

AUSF

AMF

SMF

PCF

AF

UE

RAN

UPF

DN
The 5GC architecture currently defines the following reference points:

- **NG**: RAN - core
- **N1**: UE - AMF
- **N2**: RAN - AMF
- **N3**: RAN - UPF
- **N4**: SMF - UPF
- **N5**: PCF - AF
- **N6**: UPF - DN
- **N7**: SMF - PCF
- **N8**: UDM - AMF
- **N9**: two UPFs
- **N10**: UDM - SMF
- **N11**: AMF - SMF
- **N12**: AMF - AUSF
- **N13**: UDM - AUSF
- **N14**: two AMFs
- **N15**: PCF - AMF
- **N16**: two SMFs
- **N17**: AMF - 5G-EIR
- **N18**: any NF – UDSF
- **N19**: two PSAs
- **N20**: AMF - SMSF
- **N21**: UDM - SMSF
- **N22**: AMF - NSSF
- **N23**: PCF - NWDAF
- **N24**: visited PCF – home PCF
- **N25**: PCF - UDR
- **N26**: AMF – 4G MME
- **N27**: visited NRF - home NRF
- **N28**: PCF - CHF
- **N29**: SMF – NEF
- **N30**: PCF – NEF
- **N31**: visited NSSF – home NSSF
- **N32**: visited SEPP – home SEPP
- **N33**: AF – NEF
- **N34**: NSSF – NWDAF
- **N40**: SMF - CHF
UPF

The 5GC’s **User Plane Function** performs all the user plane functions handled in 4G by S-GW, P-GW, and TDF, including:

- anchor for mobility
- connection to external data networks (e.g., Internet)
- optionally Firewall and Network Address Translation (NAT) functions
- packet queuing
- packet routing and forwarding
- packet inspection (optionally DPI), classification, QoS handling
- policy enforcement
- packet marking
- lawful intercept
- traffic usage statistics collection and reporting
- IPv4 ARP and IPv6 neighbor solicitation
Why decouple AMF and SMF?

The 4G MME has 2 distinguishable functions

1. access/mobility management
 - contacting the HSS, handling UE authorization and key distribution
 - allocating Temporary Mobile Subscriber Identity
 - managing handoff
 - lawful interception

2. session management
 - creating/updating/removing data sessions
 - allocating IP addresses
 - managing context for the UPF

A single RRC message often performs access and session attaches!

But a single UE can simultaneously participate in multiple sessions

Access/mobility and session management can be separated into micro-services to increase flexibility and scalability
AMF — Access and Mobility Function

The AMF performs the access and mobility functions that were handled by the 4G MME, S-GW-C and P-GW-C

- NAS signaling for access and mobility management
- UE authentication
- allocation of Globally Unique Temporary Identity and Temporary Mobile Subscriber Identity
- UE security context management
- registration management
- connection management
- reachability management
- mobility management
- apply mobility related policies from PCF (e.g., mobility restrictions)
SMF — Session Management Function

The SMF performs the session management functions that were handled by the 4G MME, SGW-C, and PGW-C

- NAS signaling for session management
- managing the PDU sessions
- allocates IP addresses to UEs (DHCP server)
- selection and control of UPF
- sends QoS and policy information to RAN via the AMF
- downlink data notification
- supports MEC by selecting a UPF close to the edge
- applies policy and charging for services
- control plane for lawful interception
Slicing

A single UE can participate in more than one slice
Each UE is served by a single AMF
but each slice has its own SMF and UPF
Capability exposure

In order to enable new service types and integrate with vertical industries, 5G core functionalities will be made available to 3rd parties, including:
- application service providers
- end-users (vehicles, factories, smart cities, etc.)

5G learned from MEC the importance of capability exposure and defined the Network Exposure Function (NEF). Like MEC’s Mobile Edge Platform, the NEF can be queried via an API to discover available services.

Capability exposure is a very common feature of web-based services and the modern way of providing such services is via RESTful APIs. 3GPP CT4 decided to completely re-architect the core to be RESTful, resulting in the Service Based Architecture (SBA).

In SBA, all the core network functions are defined as RESTful servers with APIs called Service Based Interfaces.
The NFs are interconnected via a logical bus
i.e., every NF can communicate with every other NF
The software of one NF may or may not be on the same server as another NF
Representational State Transfer, defined by Roy Fielding (in his PhD thesis) is a software architectural style for services, not a precise protocol. REST breaks down transactions into component interactions. In order to guarantee performance, scalability, simplicity, and reliability, REST architecture imposes 6 specific properties, including (3 / 6):

- **client-server** (consumer-producer) architecture
- **stateless** (servers do not maintain information on clients)
- **uniform interfaces**
 - CRUD operations
 - **Create** (POST)
 - **Read** (GET)
 - **Update** (PUT)
 - **Delete** (DELETE)
 - usually using **Uniform Resource Identifiers** and HTTP+JSON/XML

An API that conforms to REST principles is called a RESTful API while an API that violates any of the principles is not RESTful.
Using RESTful APIs

Let’s see how a RESTful API could be used for a fictitious social network

GET https://api.friendnet.com/members
 will return a list of all members of friendnet (in JSON or XML format)

GET https://api.friendnet.com/members/yjstein
 will return profile information of a member named yjstein

GET https://api.friendnet.com/members/yjstein/job
 will return only the member’s job information

PUT https://api.friendnet.com/members/yjstein/job {new info}
 will update the member’s job information

POST https://api.friendnet.com/members/yjstein/blog {content}
 will create a new blog entry in yjstein’s profile

POST https://api.friendnet.com/members {new member information}
 will create a new profile

DELETE https://api.friendnet.com/members/yjstein
 will delete the member’s profile
JSON and XML

An HTTP server responds with *status codes* and a body in JSON or XML

- 1xx Informational
- 2xx Successful (e.g., 200 OK, 201 created)
- 3xx Redirection
- 4xx Client Error (e.g., 400 bad request, 401 unauthorized, 402 payment required, 404 not found)
- 5xx Server Error (e.g., 500 Internal Server Error, 501 Not Implemented, 503 Service Unavailable)

For example, to GET https://api.friendnet.com/people/yjstein
the friendnet server may respond with 200 (OK) and one of:

JSON
```json
{
  "first-name": "Yaakov",
  "last-name": "Stein",
  "job": "CTO - RAD",
  "education": "PhD Theoretical Physics, HUJI",
  "web-site": "www.dspcsp.com"
}
```

XML
```xml
<member>
  <first-name>Yaakov</first-name>
  <last-name>Stein</last-name>
  <job>CTO - RAD</job>
  <education>PhD Theoretical Physics, HUJI</education>
  <web-site>www.dspcsp.com</web-site>
</member>
```
To see 5G SBA REST principles, start with the **Network Repository Function** which allows every NF to discover the services offered by other NFs

- registering services (network function instances)
- maintaining profile of available NF instances
- exposing services

Before service instance NF0 can be used, it registers with the NRF

- NF0 is the *client*, NRF is the *server*
- NF0 sends to the NRF an HTTP PUT with its profile in the body
- NRF responds with a 201 message “created success” acknowledgement

Instance NF1 desiring to consume service provided by NF0 queries the NRF

- NF1 is the *client*, NRF is the *server*
- NF1 sends to the NRF an HTTP POST with desired query in the body
- NRF responds with a 200 “OK” message with a list of NFs containing NF0

NF1 can now consume service from NF0

- NF1 is the *client*, NF0 is the *server*
- NF1 sends to NF0 an HTTP POST with request for service/session in body
- NF0 responds with a 200 or 201 message (depending if 1-time read or opening session)
Simplified example – UE service request

Let’s assume that a UE has already registered with a gNB (via RRC)
 and the gNB has selected an AMF for it
 and it has connected (N1 messaging)

The UE now wants to consume some service (with a type and attributes)

1 the SMF registers the services it provides with the NRF
2 the gNB forwards a registration request to the selected AMF
3 the AMF queries the NRF for an appropriate SMF
 and receives the address of a registered SMF
4 the AMF now sends a post to the selected SMF (N11 messaging)
5 the SMF accesses the UDM (N10 messaging) to check authorization
6 the SMF selects an appropriate UPF, initializes it (N4 messaging)
 and returns 200 with IP address, tunnel identifiers, etc. in body
7 the SMF communicates with PCF (N7 messaging) to configure rules
8 the SMF returns “created” to AMF
9 the AMF informs the UE that it can start consuming the service
Network Exposure Function

In 5G end-user and service provider application functions (AFs)
also need access to the mobile network’s resources (mostly NFs)
Likewise, the 5G network wants information from external AFs
such as expected traffic patterns and mobility behavior
Allowing external AFs full access via the NRF would present security issues
so 5G defined a secure, intelligent, service-aware gateway function
5G adopted from Mobile Edge Computing the idea of an exposure function
• in MEC it is called Mobile Edge Platform service discovery function
• in the 5G core it is called the Network Exposure Function (NEF)
The NEF provides a RESTful API for external users to discover services

The basic idea of an NEF actually started with 4G
which defined a Service Capability Exposure Function
for transferring small amounts of IoT data in signaling messages
without need to set up a user plane connection
Statelessness and the UDM

5G core servers are stateless, but often need access to state information. For this purpose, there is a Unified Data Management function that offers data storage (currently to AMF, SMF, SMSF, NEF, and AUSF).

The UDM accesses 2 other functions:
- **Unstructured Data Storage Function**
- **Structured Data Storage Function**

Using a *unified* data store simplifies its management, resilience, security, etc. Modern data stores are fast, handle huge amounts of data, and are **cloud native**.

UDM is used by AMF and SMF to retrieve the UE’s subscription data (like 3G HLR and 4G HSS). UDM is used by AFs to subscribe or unsubscribe to data change notifications.

The AUSF retrieves information from the UDM to authenticate and informs the UDM about successful or unsuccessful authentications.

Future revisions will expand the use of the UDM.
The 5G **Authentication Server Function** implements the part of the 4G HSS not in the UDM

The AMF (using the NRF) selects an AUSF to authenticate the UE to the core

The AUSF employs EAP authentication

The 5G **Policy Control Function** replaces the PCRF in 4G networks

- provides policy rules for control plane functions including slicing, roaming and mobility management
- accesses subscription information for policy decisions taken by the UDM
- supports new 5G QoS policy and charging control functions

The **Application Function** interfaces MEC functions with the SBA

- identifies relevant traffic (e.g., by 5-tuple)
- specifies locations of processing functions
- influences selection of UPF
- supplies application related information to the PCF
The **Charging Function** (which is part of) assists mobile operators and application service providers to monetize their services.

The CHF is part of the **Converged Charging System** in the BSS/OSS.

The CHF can differentiate billing rates according to:
- network slice
- QoS parameters
- application functions consumed

CHF also supports spending limiting by interaction with the PCF (N28).

The CHF also enables:
- unified charging for multi-operator cases
- charging for non-3GPP access
The **NetWork Data Analytics Function** analyzes network performance data to other core functions.

At present only the load level of a particular slice instance is reported.

For example:

- the NSSF needs load level for intelligent slice selection (N34 interface) which it can access over the N34 interface.
- the PCF requires load level to steer traffic or assign additional resources which it can access over the N23 interface.

A core function may *request* analytics data when needed or may *subscribe* to be notified by the NWDAF when a slice’s load level changes or passes a threshold.
Example session establishment
SA and NSA

Up to now we have been talking about StandAlone access where a 5G gNB connects to a 5G core.

Most of the initial deployments will be NonStandAlone access where parts of 4G LTE network are utilized.

3GPP has defined a 3 SA options:

The obvious two are pure SA 4G (option 1) and 5G (option 2).

For the distant future there is option 5 for supporting legacy phones with a 4G LTE air interface connecting to a 5G core.

Diagram:
- EPC
- 5GC
- eNB
- gNB
- ng-eNB
- 4G data
- 4G ctrl
- 5G data
- 5G ctrl
- LTE
- NR
- Option 1
- Option 2
- Option 5
The most important NSA option in the near term is called option 3 which assumes installation of a gNB for the advantages of NR but does not (yet) upgrade the core to 5GC and so provides higher data rates but not full 5G capabilities. This will enable fast deployment of gNBs for eMBB.

In option 3 there is no direct connection between gNB and EPC. User and control data flow through the eNB via X2-U and X2-C interfaces.

In option 3A there is an S1-U connection from gNB to EPC (but no X2-U). Option 3X has both X2 and S1 to enable load balancing.
Other options

For the distant future there are options 4 and 7 which only have a 5G core (no EPC) but support 4G legacy UEs via upgraded ng-eNBs.

In option 4 gNB is the master and ng-eNB connects via Xn interface.

In option 7 ng-eNB is the master and gNB connects via Xn interface.

These too have variations (4, 4A, 7, 7A, and 7X).