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Basic Communications Security
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Communications Security

Communications security (COMSEC) means preventing unauthorized access to 
communications infrastructure and communicated  messages, while still 
providing the communications service between intended parties 

Once upon a time this subject was only of interest for military communications
but it is now crucial to businesses and residential customers as well

In the early days of the Internet, the model was trust everyone

In the 1990s the model changed to soft on the inside, hard on the outside
trust employees and colleagues but not outsiders

which led to development of access policies, firewalls, etc.

Today standard operation procedures dictate 
• trust no-one
• constantly monitor everything
• pro-actively search for vulnerabilities
which requires layers of protection



Basic Security 3

Threats

Before adopting a security measure one must understand the threat

In this talk we will assume that a user who consumes services from a server

Potential threats include :
• denial of service (DoS) to the user 
• theft of service by an unauthorized user
• access to confidential information by an unauthorized user
• modification of information by an unauthorized user
• control of restricted resources by an unauthorized user
• physical damage to resources

Security experts build threat models 
• what are the risks ?
• who are the potential attackers
• what at vulnerabilities and attack vectors
before putting countermeasures into effect
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Countermeasures

What can we do to combat threats ?

• Physical security – preventing access to communications devices and links
• Emission security – preventing interception and jamming
• Authorization – preventing unauthorized access to resources
• Source authentication – confirming the source of a message
• Integrity – preventing tampering with messages
• Confidentiality – preventing eavesdropping
• DoS blocking – preventing Denial of Service
• Topology hiding – thwarting traffic analysis
• Anti-hacking – preventing injection of computer malware
• Privacy – protecting user’s personal data from mining and directed collection
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Authorization

The first threat to consider is unauthorized access to resources

AAA (user) Authentication, Authorization, and Accounting 
means any mechanism for controlling access to resources

Well-known AAA systems include :
• TACACS : Terminal Access Controller Access Control System

• RADIUS : Remote Authentication Dial-In User Service 

• DIAMETER : twice as good as RADIUS

Such systems require 
• a supplicant (the party requesting service)
• a method of proving identity (such as a password or biometric characteristic)
• an authenticator (the entity approving access) not necessarily the server itself

connect to free port authorized user

server
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Passwords

A password is a string provided by the supplicant and verified by the server

Threats to the use of passwords:
• guessing of password
• theft of password
• brute-force (exhaustive search) discovery

Countermeasures
• use complex passwords (at least one capital, one numeral, one punctuation)

• use long passwords (thisisareasonablygoodpassword, x!A0 isn’t)
• delay after wrong guess
• CAPTCHAs (Completely Automated Public Turing test to tell Computers and Humans Apart)

are no longer considered useful
• three-factor authentication

– something you are
– something you have
– something you know

password
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Knowing the password 

How does the server know that the supplicant entered the correct password?

There are two parts to this question:
1. the supplicant and authenticator need to agree on a password

typically during registration and password change
2. the authenticator must remember the password

The first part is a special case of key exchange and will be discussed later
For the meanwhile assume that either :
• the authenticator assigns the password 

and sends it to the user over a secure channel (e.g.,  via trusted courier)
• the supplicant supplies the password over a secure channel

The second part sounds obvious – the server can simply store the password!

But passwords must never be stored in the open 
due to the threat of theft of the password file

Instead the authenticator should store something else
that still enables it to check that the supplicant entered the correct password

This something is called a hash
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Crypto-hashes

In computer science a hash is a function that 
1. maps strings (vectors) of arbitrary length to strings (vectors) of fixed length
2. ensures that small change in input map to large changes in output

The output length may be much smaller than the input length,
meaning that many inputs map to the same output (collisions!)

A crypto-hash has a further property of being a 1-way function
3. calculating the hash function is computationally easy

finding an input that produces a given output is computationally hard

You may already know about check-sums and CRC hashes
these are good for random error correction

but are not crypto-hashes and are not good against malicious modification

Well-known crypto-hashes include :
• MD5 (no longer considered secure)
• Secure Hash Algorithm SHA1 (widely used, no longer considered secure)
• Secure Hash Algorithm SHA2 (actually 6 hashes SHA-224,256,384,512,512/224,512/256)
• Secure Hash Algorithm SHA3 (new)
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Using hashes for the password problem

How does a crypto-hash help with the passwords problem?
• during registration the password is crypto-hashed and the hash is stored
• the password file/database contains only hash values

from which passwords can not be recovered  (due to the 1-way function!)
• the supplicant enters the password 
• the password is hashed and the hash value is compared to the stored hash
• if the hashes match then access is granted

otherwise access is denied

This mechanism is fine for logging on to a local computer
but not for requesting access over a communications link or network

• if the password were to be sent over the link in the clear
an eavesdropper could intercept it and know the password!

• if the password were locally hashed and the hash sent over the link
an eavesdropper could intercept the hash and send it to gain access!

We need something better!
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CHAP

The solution is a Challenge Handshake Authentication Protocol
in which the supplicant answers a challenge 

that proves that he knows the password

In the simplest challenge scenario the challenge is just a random string
• authenticator sends random challenge message to the supplicant
• supplicant concatenates challenge + password and crypto-hashes it
• supplicant sends crypto-hash as response to authenticator
• authenticator compares response with expected response
• if the hashes match then access is granted

otherwise access is denied

Note that an eavesdropper can view the response, but that won’t help him
since the authenticator sends a different random challenge each time

Authenticatorsupplicant

challenge

response
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EAP

Extensible Authentication Protocol is a authentication framework 
and runs over various link layers (PPP, Ethernet, WiFi) without needing IP

Originally developed for PPP (extends PPP’s original CHAP)

Dozens of specific methods (EAP-PSK, EAP-MD5, EAP-TLS, EAP-IKEv2, EAP-SIM, …)

Used as a link layer authentication for WiFi (WPA, WPA2) and IEEE 802.1X

EAP provides 1-sided authentication (supplicant by authenticator)
but it can be run in both directions for mutual authentication

EAP operation
• optionally authenticator sends Identity Request to supplicant
• optionally supplicant sends Identity response
• authenticator sends EAP request with challenge data 
• supplicant sends EAP response
• authenticator sends success or failure
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802.1X

802.1X is an IEEE standard for authenticating users of a LAN or WLAN

1X defines
• 3 parties: supplicant, authenticator, and authentication server
• an encapsulation of EAP called EAPoL (EAP over LAN) 
• a Port Access Entity (PAE)

– before authentication only EAPOL traffic can pass through the port 
– after authentication all traffic can pass through the port

802.1X was extended in 2010 not only to open ports
but to authorize security associations and services 
in order to support MACsec (802.1AE) and Secure Device Identity (802.1AR) 

access network

RADIUS
AAA

server
Authenticator

core network

EAPoL EAP over 
RADIUS

supplicant
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Integrity (anti-tampering) protection

The next threat we need to consider is a Man in the Middle (MiM) attack

Here someone gains access to a Network Element
and can tamper with packets on-the-fly

compromised
NE

Alice

Bob

Eve 
(MiM)

From now one, instead of talking about a user and a server
we will assume that Alice and Bob want to communicate

while Eve wants to eavesdrop on their communications
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MAC

We can provide integrity protection 
using a Message Authentication Code (MAC)

Warning: Don’t confuse this MAC 
with Ethernet’s Media Access Control
or with DSP’s Multiply and ACcumulate

A MAC is a short block of information that
• is uniquely determined by the message
• verifies that the message has not been modified 

i.e., it is highly unlikely that a modified packet has the same MAC (collision)
• is difficult to forge

The MAC is inserted into packet headers and can be verified upon receipt
but only the authorized sender knows how to create the MAC

So if Eve modifies the packet
• he does not know how to find the new MAC
• if he leaves the MAC unchanged the verification will probably not succeed
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HMAC

A Hash-based Message Authentication Code (HMAC) 
uses a crypto-hash as a MAC 

but other mechanisms (such as block ciphers) can be used to build MACs

The simplest way to prevent forging MACs is by using a shared key (password)

which once again returns us to the key exchange problem 
which we’ll discuss later

HMAC operation:
• Alice calculates HMAC by crypto-hashing message + key, and inserts into packet
• Bob calculates HMAC using message + key, and compares to HMAC in packet
• if the HMACs match then packet is accepted

otherwise packet is discarded

Of course Eve, not knowing the key, can not forge the HMAC
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Source Authentication

How can Bob be sure that a packet was actually sent by Alice ?

Ethernet and IP packets contain Source Addresses (SA)
but these can be readily forged

MACs can also be used to authenticate a packet’s source address
that is, to prove that the SA correctly indicates the packet’s source

We can re-use integrity mechanisms (e.g., MACs) to solve this problem !

All that is needed is to have the (H)MAC protect the SA
if the MAC is correct, then the SA indeed belongs to the claimed sender

Eve doesn’t know how to forge MACs (e.g., not knowing the shared key)
and so can’t fool us into believing that Alice sent the packet

DA SA payload

integrity
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Replay Attacks

Another type of attack is the replay attack

Here the MiM intercepts a packet and resends it multiple times
(transfer$100  → transfer$100, transfer$100, transfer$100, transfer$100)

Integrity and source authentication mechanisms do not detect replay attacks
since the MACs calculate correctly every time!

We can reuse integrity mechanisms (e.g., MACs) to solve this problem too

To defend against replay attacks
• add or utilize a packet sequence number field
• have the MAC protect the sequence number field
• if the same SN is received again, discard packet

DA SA payload

integrity

SN
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Confidentiality

Another threat is eavesdropping
that is observation of a packet’s content by unintended parties

The standard countermeasure is encryption

This threat is so obvious that many people equate security with encryption

In fact, confidentiality is often the least important threat
and many types of communications do not need it

On the other hand, it is hard to conceive of communications 
that do not require source authentication and integrity protection

after all, what is the value of incorrect information (AKA fake news)

Encryption takes plaintext and produces ciphertext
while decryption takes the ciphertext and retrieves the original plaintext

There are two very different types of encryption:
• symmetric key (requires a shared key)
• public key (no shared key needed)
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Symmetric key encryption

Symmetric key encryption is based on the sides having a shared key
and so, once again, requires solving the key exchange problem

There is one symmetric key algorithm that is provably safe, that is
Eve can recover no information from observing the communications

Alice and Bob have an identical copies of a one-time pad
i.e., a list of random bits at least as long as the message

Alice can xor her message with the one-time pad 
creating a message unreadable to Eve (who does not have the one-time pad)

Bob can xor the encrypted message with the one-time pad
recovering the original message

The one-time pad must never be used again
re-use leads to leakage of secret information

So one-time pads need to be very long and thus cumbersome to use

Instead most symmetric encryption algorithms use shared keys

X Y X xor Y

0 0 0

0 1 1

1 0 1

1 1 0
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Symmetric Encryption Using a Shared Key

Simple encryption algorithms are either substitution ciphers

Or permutation ciphers

THIS IS A SECRET MESSAGE

SHARED KEY SHARED KEY SH

LPJJEMSFFTSXKSWYDMPXQAZM

+
=

PLAINTEXT

CIPHERTEXT

S

THIS IS A SECRET MESSAGE

HSITI   ESASRTMCE SAEESG

KEYKEY KEYKEY KEYKEY KEYKEY

PLAINTEXT

CIPHERTEXT

P
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Block ciphers

Block ciphers break a message into blocks of length n bits (n=64, 128, 256, …)

For each block:

• substitution ciphers substitute ciphertext for plaintext
the substitution is a key-dependent 1-1 function from n-bits to n-bits

the function is usually called an S-box

• permutation block ciphers permute n bits to n bits
the permutation is called a P-box

It turns out that both substitution ciphers and permutation ciphers
are relatively easy to break

That is, given enough ciphertext a code-breaker can deduce the plaintext

In 1949 Claude Shannon (in the paper Communication Theory of Secrecy Systems)

introduced substitution-permutation (S-P) ciphers
which encode each block by alternating rounds of S-boxes and P-boxes

and showed that it was much harder to break 

Shannon’s idea was first exploited by Feistel (from IBM)

S

P
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DES

In 1977 NIST published the Data Encryption Standard 
based on the Feistel algorithm

• Inputs
– 64 bits of plaintext
– a 56 bit key

• Performs 16 rounds of S-boxes and P-boxes
• Outputs 64 bits of ciphertext

Due to using a short 56-bit key
since the late 1990s DES is not considered secure against brute-force attacks
(and possibly never was secure against sophisticated attacks …)

In order to save DES, a method called triple-DES (3DES) was proposed

3DES uses a key of length 3*56=168 bits, but its effective length is 112 bits 

NIST allows use of 3DES use until 2030, but there is something better …
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AES

In 2001 NIST adopted an algorithm called Rijndael
(after its Belgian creators Vincent Rijmen and Joan Daemen)

as the Advanced Encryption Standard 

This choice was the result of a 5-year process 
in which 15 candidate algorithms were compared

AES 
• Inputs

– 128 bits of plaintext
– a 128/192/256 bit key

• Performs 10/12/14 rounds of S-boxes and P-boxes
• Outputs 128 bits of ciphertext

AES is approved by the NSA for protection of top secret data (w/ 256 bit key)

AES-GCM is a combined algorithm, providing
source authentication, integrity protection, and encryption

using a single algorithm
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Block Cipher Modes  (1)

The encryption mechanisms we have discussed so far are block ciphers
that is, they operate on blocks of N bits 

But how do we use a block cipher to encrypt an arbitrary sized message ?

The simplest method is Electronic codebook (ECB)
which performs the block cipher independently on each N bits
(if needed, the last block is padded with zeros)

If the input repeats itself, ECB encrypts in the same way
revealing patterns in the plaintext (leakage - aiding the cipher breaker)

ECB is also susceptible to replay attacks

Thus, ECB should never be used

What can be done ?

Instead of encrypting the plaintext, 
• we can xor the plaintext with the previously encrypt block before encrypting
• encrypt the previous ciphertext and then xor with the plaintext
• or even encrypt something else entirely (e.g., a counter) and xor with the plaintext
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Example of ECB’s failure

original AES-ECB AES-CBC

All patches of the same color in the original picture 
are encrypted by ECB to the same value 

This results in significant leakage
which can be exploited to recognize the picture and recover the secret key

Other block cipher modes do not exhibit this leakage

pictures by Phillip Wang
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Block Cipher Modes (2)

Cipher block 
chaining CBC 

Counter 
mode CTR

Galois Counter Mode GCM is CTR using Galois field operations
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Block Cipher Modes (3)

Cipher 
feedback CFB

Output 
feedback OFB
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Key Exchange (AKA Key Distribution)

The time has finally come to discuss key exchange
which must be used whenever we need a shared key 

Some ways of sharing keys include:
• face-face meetings
• trusted couriers
• synchronized key generators
• using an existing (but perhaps compromised) secure channel

This makes symmetric encryption logistics a nightmare

For many years mathematicians searched for a solution to this problem

It was first solved in principle in GCHQ by James Ellis and Chris Cocks
but remained classified and unknown to the public at large

Key exchange was solved again by Martin Hellman 

Use of public keys for this was solved in theory by Whitfield Diffie
and Ron Rivest provided the first 1-way function
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My classification

We can explain four types of encryption by the following analogies

Shared-key (symmetric) encryption (e.g., DES, AES)
• Alice and Bob both have identical copies of the key to a strong-box
• Alice puts her message in the box, locks it with her key, and sends to Bob
• Bob uses his identical key to open the box and recovers the message

One private key encryption (e.g., RSA or ECC)
• Bob has the key to open a box that locks automatically upon closing (1-way function)

• Bob sends open box to Alice, Alice puts message in box, closes, sends back to Bob
• Bob opens the box with his key

Two private key encryption (e.g., RSA or ECC with signature)
• Alice has a locking key and Bob has an unlocking key to a strong-box
• Alice puts her message in the box, locks it with her locking key, and sends to Bob
• Bob unlocks the box with his unlocking key, and recovers Alice’s message

Multi-exchange (e.g., DH)
• Alice puts her message in the box, locks with her padlock, and sends to Bob
• Bob places his padlock alongside Alice’s, locks, and sends back to Alice
• Alice removes her padlock, and sends back to Bob
• Bob removes his padlock, and recovers the message
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First attempts to encrypt without keys

Can we use one-time pads to communicate without shared secrets ?

ATTEMPT 1 – substitution code
• Alice xors message M with a one-time pad A and sends D1 = M + A to Bob
• Bob xors D1  with his one-time pad B and sends D2 = M + A + B to Alice
• Alice xors D2  with her old one-time pad A and sends D3 = M + A + B + A = M + B
• Bob xors D3 with his old one-time pad B and recovers D3 + B = M + B + B = M 

While the data of each transmission Dn is safe
if Eve observes all the transmissions, she can recover the message

• Eve observes D1 = M + A,  D2 = M + A + B, and D3 = M + B
• Eve xors D1 + D2 + D3 = B + D3 = M   BROKEN

ATTEMPT 2 – permutation code
• Alice permutes  M with a one-time permutation A and sends D1 = A*M to Bob
• Bob permutes D1  with his one-time permutation B and sends D2 = B*A*M B to Alice
• but permutations don’t commute!

so if Alice permutes D2  with the inverse of her old one-time permutation 
she obtains D3 = A-1 * B * A * M  ≠ B*M  DOESN’T WORK
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Public key cryptography

Two things are missing to make this idea work:
1. one-way functions
2. greater mathematical sophistication

The breakthrough is public key cryptography (AKA asymmetric cryptography)

With this method each party has a public key and a private key

Public keys may be advertised 
but private keys are kept private

Operation
• Alice encrypts the message using Bob’s public key 

– and optionally signs with her private key if authentication is desired

• Bob decrypts it using his private key (and optionally Alice’s public key)

• Eve, not knowing the private key, can not decrypt the message

So no key distribution is needed
although you still have to ensure that Alice’s public key is authentic
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Digital Signatures

Another application of public key cryptography is digital signatures
If a message is digitally signed by Alice

then Bob can verify that Alice really signed it, and not Eve
The idea behind the use of public key methods is

the signature proves that the signer had access to the private key
the private key is not divulged

Operation
• Alice signs the message with her private key and sends to Bob
• Bob can verify the signature using Alice’s public key
• as  a side effect, the verification also ensures integrity

Note that this is a kind of source authentication 
but different from a MAC 
since a MAC relies on a shared secret 



Basic Security 33

Public key algorithms

Public-key cryptography (asymmetric cryptography) 
relies on mathematical calculations that are hard to perform, such as

• factoring large integers
it is easy to multiple 2 large primes p and q to find n = pq

but it is hard to factor n to find p and q  

• finding discrete logarithms (and related : computational DH, decisional DH)
given a finite group G

it is easy to multiply an element b with itself n times to find g = bn

but it is hard to find given b and g to find n such that bn = g 

• elliptic curve logarithms 
given an elliptical curve y2 = x3 + ax + b over the field Fp

(elements 0 … p-1 with all operations modulo p)

it is easy to perform the EC multiplication operation 

of element b with itself n times to obtain bn = b . b . b … = g
but it is hard given b and g to find n such that bn = g 
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RSA

RSA was one of the first public key algorithms to be discovered
Named after Ron Rivest, Adi Shamir, Leonard Adleman who published it in 1977

RSA is based on the fact that 
• it is easy to multiple 2 large prime numbers
• it is hard to factor the product to recover the prime numbers
(It is an open problem in mathematics whether factoring is indeed hard)

To use:
• find two large prime numbers and multiply them
• based on number theory create public and private keys
• sign messages using private key   or 
• encrypt messages using recipient’s public key

RSA was patented (by RSA Security Inc., founded by R, S, and A) but expired in 2000
• there are rumors that RSA placed backdoors in their products for the NSA
• RSA Security was acquired by EMC in 2006, which was acquired by Dell in 2016

RSA is still often used instead of stronger elliptical curve methods 
due to the latter having patents in force
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RSA algorithm   (for the mathematically inclined)

Preparation
• Bob selects two large primes p and q (there are many methods to find primes)

• Bob calculates n = pq and Φ=(p-1)(q-1)
• Bob selects e between 2 and Φ-1 which is co-prime to Φ
• Bob computes d such that ed = 1 mod Φ (using Euclid’s algorithm)
• Bob publishes {n, e} as his public key, and keeps d as his private key

Mathematical background
• Raising M to the e power modulo n : Me mod n 

– is a 1:1 transform 
– is a one-way function

• if C = Me mod n  then  M = Cd mod n (follows from Fermat’s little theorem and CRT)

Operation
• Alice encrypts her message M into ciphertext thus:  C = Me mod n 

and sends to Bob
• Bob decrypts thus :  Cd mod n = M
• Eve, not knowing p and q and thus not d, can not recover M
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El Gamal (for the mathematically inclined) 

Discrete logarithm cryptosystem published by Taher Elgamal in 1985 
PhD under Hellman,    chief scientist at Netscape where he was father of SSL

director engineering and afterwards CEO of RSA Security Inc.,    now CTO for security at SalesForce

and used in NIST’s Digital Signature Standard 

Preparation
• Bob chooses a cyclic group G of order q with generator g
• Bob chooses a random number x between 1 and q-1
• Bob computes h = gx

• Bob publishes {G, q, g, h} as his public key, and keeps x as his private key

Operation
• Alice randomly chooses an ephemeral key y between 1 and q-1 
• Alice calculates c1 = gy

• Alice calculates the shared secret s = hy

• Alice encodes her message as an element m of G and calculates c2 = ms
• Alice sends the ciphertext (c1 ,c2) to Bob
• Bob calculates the shared secret s = c1

x = gyx = gxy = hy

• Bob calculates the inverse of s : s-1= c1
q-x = g(q-x)y

• Bob recovers the message  m = c2s-1 = ms s-1

• Eve, not knowing x, can not find s or s-1



Basic Security 37

Certificates

I can be sure of Alice’s public key if she personally hands it to me
if I am just given it – it may be forged by Eve !

How can we be sure of someone else’s public key ?
The idea is to have someone trusted (i.e., for whom we already have a public key) vouch for it
How can that trusted party be sure ? Someone he trusts vouches for it!

There are two methods to implement this 
• Public Key Infrastructure (e.g., X.509)
• web of trust (e.g., PGP)

X.509 is an ITU-T standard for PKI
It specifies the format of certificates 

and a strict hierarchical system of Certificate Authorities that can issue them

With the web of trust model anyone (not just special CAs) may sign certificates 



Basic Security 38

Secure key exchange

Using public key cryptography no key distribution is required

However, public key encryption is computationally much more expensive
than symmetric encryption

One solution to this problem is to re-use public key cryptography

We only use public key encryption to encrypt a (symmetric) key
all the messages are sent using inexpensive symmetric cryptography

Operation
• Alice encrypts a random key using her private key and Bob’s public key
• Bob decrypts the key using his private key and Alice’s public key
• Alice and Bob now communicate using symmetric encryption
• after some amount of key use, the process is repeated
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Diffie–Hellman key exchange

We do not need full public key cryptography to distribute symmetric keys

The original DH was published by Whitfield Diffie and Martin Hellman in 1976
although discovered earlier in GCHQ but classified

DH is based on the field Fp (numbers 0 … p-1, with operations modulo p)

Operation  (for the mathematically inclined)
• Alice and Bob agree to use a prime number p and a primitive root g

(g is a primitive root, if every number is congruent to gn for some n)
• Alice chooses a secret integer a and sends to Bob A = ga mod p
• Bob chooses a secret integer b and sends to Alice B = gb mod p
• Alice now computes s = Ba mod p = gba mod p
• Bob now computes   Ab mod p = gab mod p = s
• Alice and Bob now share the secret s
• Alice and Bob now use s as a symmetric key !
• Eve, not knowing either a or b, can not deduce s
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Diffie Hellman Groups (RFC 7296)

0 NONE [RFC7296]
1 768-bit MODP Group [RFC6989], Sec. 2.1 [RFC7296]
2 1024-bit MODP Group [RFC6989], Sec. 2.1 [RFC7296]

3-4 Reserved [RFC7296]
5 1536-bit MODP Group [RFC6989], Sec. 2.1 [RFC3526]

6-13 Unassigned [RFC7296]
14 2048-bit MODP Group [RFC6989], Sec. 2.1 [RFC3526]
15 3072-bit MODP Group [RFC6989], Sec. 2.1 [RFC3526]
16 4096-bit MODP Group [RFC6989], Sec. 2.1 [RFC3526]
17 6144-bit MODP Group [RFC6989], Sec. 2.1 [RFC3526]
18 8192-bit MODP Group [RFC6989], Sec. 2.1 [RFC3526]
19 256-bit random ECP group [RFC6989], Sec. 2.3 [RFC5903]
20 384-bit random ECP group [RFC6989], Sec. 2.3 [RFC5903]
21 521-bit random ECP group [RFC6989], Sec. 2.3 [RFC5903]
22 1024-bit MODP Group with 160-bit Prime Order Subgroup [RFC6989], Sec. 2.2 [RFC5114]

23 2048-bit MODP Group with 224-bit Prime Order Subgroup [RFC6989], Sec. 2.2 [RFC5114]
24 2048-bit MODP Group with 256-bit Prime Order Subgroup [RFC6989], Sec. 2.2 [RFC5114]

25 192-bit Random ECP Group [RFC6989], Sec. 2.3 [RFC5114]
26 224-bit Random ECP Group [RFC6989], Sec. 2.3 [RFC5114]
27 brainpoolP224r1 [RFC6989], Sec. 2.3 [RFC6954]
28 brainpoolP256r1 [RFC6989], Sec. 2.3 [RFC6954]
29 brainpoolP384r1 [RFC6989], Sec. 2.3 [RFC6954]
30 brainpoolP512r1 [RFC6989], Sec. 2.3 [RFC6954]
31 Curve25519 [RFC8031], Sec. 3.2 [RFC8031]
32 Curve448 [RFC8031], Sec. 3.2 [RFC8031]
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Quantum computers can break RSA

Public key cryptography depends 
on the computational complexity of calculations such as factorization

RSA can be broken by factoring an integer with b bits, for which

• no algorithm than runs in polynomial time O(bk) is known

• the best factorization algorithms are subexponential O((1 + ε)b)
(faster than polynomial but slower than true exponential)

But for a quantum computer, Shor’s algorithm runs in polynomial time O(b3)

Similarly, discrete logarithm and ECC cryptosystems
can be broken by quantum computers

The largest quantum computer built to date has 53 (72?) qubits
and to date no number larger > 100 has been factored by Shor’s algorithm

So these algorithms are still safe, but they won’t be safe forever

Google recently announced attaining quantum supremacy
that is performing some calculation not possible on a classical computer
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Workarounds

Since the world’s communications and financial infrastructure
is so dependent on public key infrastructure

there is an urgent need for a solution to this problem

More accurately, there will be an urgent need 
the day after the announcement of a quantum computer 
capable of quantum supremacy for these problems

Recently new types of public key algorithms have been devised

A quantum-resistant public key system is based on an intractable problem
for which there is no known simplifying quantum computer algorithm

A quantum-safe public key system is based on an intractable problem
for which one can prove that there is no simplifying quantum algorithm



Basic Security 43

Quantum resistant cryptography

Also called post-quantum or quantum-resistant cryptography
uses 1-way functions not known to be compromised by quantum computers

Recently NIST has called for proposals of such systems to be standardized 

Some proposed methods:

• Lattice-based
– NTRU is an open source (GPL) lattice based system

being considered by several standard’s bodies

• Code-based
– McEliece has been recommended by EU Post Quantum Cryptography SG

for long term protection against quantum attacks

• Multivariate
– Rainbow has resisted attack attempts since begin proposed in 2005

• Hash-based
– the Merkle signature scheme is being considered by NIST 
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QKD

An alternative to public key cryptography is Quantum Key Distribution

QKD enables Alice and Bob to exchange a random shared key
with physical (not mathematical) proof that it has not been intercepted

This key may then be used by symmetric encryption as usual

Two somewhat different quantum mechanical phenomena may be exploited
• observation collapse
• entanglement (AKA spooky action at a distance)
In either case Eve’s observing an exchanged bit can be readily discovered

QKD systems are commercially available from several sources
and have been successfully deployed for extended periods of time

Fiber-based QKD system typically work over tens of kilometers
but have been demonstrated to operate over 100s

An experimental satellite-based system has operated over 7,500 km 
between China and Vienna
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Where to apply security ?

Every layer of the user plane can benefit from security mechanisms

Control and management planes have their own mechanisms

PHYSICAL

LINK

NETWORK

TRANSPORT

SESSION

PRESENTATION

APPLICATION

PHYSICAL

LINK

NETWORK

TRANSPORT

SESSION

PRESENTATION

APPLICATION

physical site security
PHY encryption

802.1X, MACsec

IPsec

HTTPS, SSH, SFTP, …

TLS, SSL

TCP authentication option
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IPsec

IP was designed when security was not an issue

IPsec is a set of open standards that rectify many of IP’s deficiencies

IPsec is transparent to applications (apps needn’t know that it will be used)

IPsec is based on the concept of a security association (SA) 

The SA is a relationship between two or more entities
• performs mutual authorization
• specifies which security features (authentication, integrity, encryption) will be used
• specifies algorithms (DES, AES, SHA-1, RSA, …) and options
• takes care of key exchange (ISAKMP Internet Security Association and Key Management Protocol ) 

– pre-shared keys
– Internet Key Exchange (IKE, IKEv2)
– IPSECKEY DNS records

Internet Key Exchange (UDP port 500) is used for establishing IPsec sessions
(performing mutual authentication, establishing and maintaining SAs, key exchange)
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IKE and IPsec stages

IPsec tunnel operation typically has 4 steps

• IKE Phase 1 (main and aggressive modes)
mutually authenticate IPsec peers 
sets up a secure channel between them to enable IKE exchanges:
– authenticates IPsec peer identities
– negotiates IKE SA policy to protect the IKE exchange
– performs authenticated DH exchange to share keys
– sets up secure tunnel to negotiate IKE phase 2 parameters

• IKE Phase 2
negotiates IPsec SA parameters protected by existing IKE SA
establishes IPsec security associations (tunnels)
periodically renegotiates IPsec SAs to ensure security
optionally performs additional DH exchange if perfect forward security is desired

• IPsec tunnel usage

• IPsec tunnel tear-down
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IPsec modes

IPsec has two different modes of operation

Transport Mode
• IPsec header is inserted into an existing packet (between IP and TCP headers)
• packet routing is unaffected, but NAT traversal may be (new protocol numbers)

• adds security functionalities to existing flow
• if encrypting, TCP (or UDP) header is encrypted

Tunnel Mode (between Security Gateways - SEGs)
• entire IP packet is encapsulated (and optionally encrypted)
• can be used to create an IPsec VPN

IP TCP PAYLOAD

IP TCP PAYLOADIPsec

IP TCP PAYLOADIPsecIP’

transport mode

tunnel mode
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AH and ESP

IPsec has two different formats

Authentication Header (AH) – no longer recommended
• supports source authentication and data integrity only
• protection

– in transport mode protects payload and header fields except mutable
(e.g., TTL, DSCP, header checksum, offset, flags)

– in tunnel mode protects entire packet 
• uses protocol number 51

Encapsulating Security Payload (ESP)
• supports source authentication, data integrity, and encryption

– similar to AH if null encryption is used
• adds trailer(s) in addition to IPsec header
• protection

– in transport mode doesn’t protect IP header (but does TCP header)
– in tunnel mode entire packet is protected

• uses IP protocol 50
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IPsec packet formats

IP TCP PAYLOADAH

IP TCP PAYLOADAHIP’

AH transport mode

AH tunnel mode

Authenticated (except mutable)

Authenticated (except mutable)

IP TCP PAYLOAD ESP 
trailer

ESP transport mode

ESP tunnel mode

Authenticated 

ESP 
auth

ESP 
header

Encrypted

IP’ TCP PAYLOAD ESP 
trailer

Authenticated 

ESP 
auth

ESP 
header

Encrypted

IP

Note: AH and ESP headers contain “next header” fields
• for tunnel mode these are set to 4 (IPv4) or 41 (IPv6)
• for transport mode these are set to 6 (TCP) or 17 (UDP)

contains 
SEG IP addresses
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RFC 8221

RFC 8221 is the most recent IPsec implementation document
updating all previous specifications

It specifies:
• manual shared key entry SHOULD NOT be used

and if used only AES-CBC may be used for encryption
• unauthenticated encryption MUST NOT be used

always use ESP mode with a combined algorithm (e.g., AES-GCM) 
or ESP mode both encryption and authentication algorithms

• IPsec AH is no longer recommended for use

The RFC also specifies which algorithms must be supported for interop purposes
(but not necessarily used)

These specifications are updated as compared to the previous RFC 7321

Some algorithms are allowed only for IoT
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RFC 8221 algorithms

Compliant implementations implement specific algorithms as follows

Encryption algorithms

DES_IV64           MUST NOT

DES                MUST NOT

3DES               SHOULD NOT

BLOWFISH           MUST NOT

3IDEA              MUST NOT

DES_IV32           MUST NOT

NULL               MUST

AES_CBC            MUST

AES_CCM_8          SHOULD IoT

AES_GCM_16         MUST

CHACHA20_POLY1305  SHOULD

Authentication algorithms

NONE               MUST NOT

HMAC_MD5_96        MUST NOT

HMAC_SHA1_96       MUST

DES_MAC            MUST NOT

KPDK_MD5           MUST NOT

AES_XCBC_96        MAY

AES_128_GMAC       MAY

AES_256_GMAC       MAY

HMAC_SHA2_256_128  MUST

HMAC_SHA2_512_256  SHOULD
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Suite B

RFC 6379 and 6380 detail a suite of IPsec algorithms

This suite mandates AES-GCM with 128 or 256 bit keys
• GCM-128

– IPsec with AES-GCM-128 including encryption 
– IKE with AES-CBC-128, HMAC-SHA-256 and DH group 19 (256 bit ECP)

• GCM-256
– IPsec with AES-GCM-256 including encryption 
– IKE with AES-CBC-256, HMAC-SHA-384 and DH group 20 (384 bit ECP)

• GMAC-128
– IPsec with AES-GCM-128 without encryption 
– IKE with AES-CBC-128, HMAC-SHA-256 and DH group 19 (256 bit ECP)

• GMAC-256
– IPsec with AES-GCM-256 without encryption 
– IKE with AES-CBC-256, HMAC-SHA-384 and DH group 20 (384 bit ECP)
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MACsec

802.1AE MACsec was approved in June 2006

based on well known AES-128 encryption
but with a new mode - Galois Counter Mode
AES/GCM uses a single combined algorithm for integrity and encryption

MACsec
• works over Connectionless network by forming secure associations
• integrated into Ethernet frame format
• provides

– source authentication
– confidentiality
– connectionless data integrity
– replay protection
– limited blocking of DoS attacks

• may degrade some QoS attributes (e.g. introduces bounded delay)
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MACsec format

SecTAG contains
• MACsec Ethertype (88E5)

• 4B Packet Number (sequence number)

• 8B Secure Channel Identifier

ICV is a 16B Integrity Check Value 

12 B Initialization Vector

DA SA Type payload FCS

DA SA secure data FCS’SecTAG (incl. IV) ICV

integrity

optional
confidentiality
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TLS (and SSL)

Sometimes it is better to provide security at a layer higher than L3
For these cases there is Transport Layer Security (and previously versions of SSL)

Heartbleed bug in OpenSSL scared the whole world in April 2014

TLS
• adds integrity and encryption to client/server applications 

– https, smtp/pop/imap, sips, mysql, EAP-TLS…
• is based on SSL (originally developed by Netscape)
• is widely used to secure web browsing (https), email, ecommerce, etc.
• client picks a random number, encrypts with server's public key and sends to server

client and server can now communicate using symmetric encryption and MACs

Compared to IPsec, TLS
• can be implemented in a browser (e.g., for online banking or commerce)

and doesn’t require/trust OS kernel support like IPsec VPNs
• only runs over connection oriented TCP (but there is DTLS is for UDP)
• can authenticate individual users, rather than IP source addresses
• is better than IPsec at NAT traversal


