
Fundamentals of Communications Networks  1

SDN and NFV



Fundamentals of Communications Networks  2

Why SDN and NFV ?

Before explaining what SDN and NFV are
we need to explain why SDN and NFV are

Its all started with two related trends ...

1. The blurring of the distinction 
between computation and communications 

revealing a fundamental disconnect 
between software and networking

2. The decrease in profitability 
of traditional communications service providers

along with the increase in profitability
of Cloud and Over The Top service providers

The 1st led directly to SDN 
and the 2nd to NFV

but today both are intertwined



Fundamentals of Communications Networks  3

1. Computation and communications

Once there was little overlap 
between communications (telephone, radio, TV)
and computation (computers)

Actually communications devices always ran complex algorithms
but these are hidden from the user

But this dichotomy has become blurred

Most home computers are not used for computation at all 
rather for entertainment and communications (email, chat, VoIP)

Cellular telephones have become computers

The differentiation can still be seen in the terms algorithm and protocol
Protocol design is fundamentally harder

since there are two interacting entities (the interoperability problem)

SDN academics claim that packet forwarding is a computation problem
and protocols as we know them should be avoided



Fundamentals of Communications Networks  4

1. Rich communications services

Traditional communications services are pure connectivity services
transport data from A to B 

with constraints (e.g., minimum bandwidth, maximal delay)
with maximal efficiency (minimum cost, maximized revenue)

Modern communications services are richer
combining connectivity and network functionalities

e.g., firewall, NAT, load balancing, CDN, parental control, ...

Such services further blur the computation/communications distinction
and make service deployment optimization more challenging



Fundamentals of Communications Networks  5

1. Software and networking speed

Today, developing a new iOS/Android app takes hours to days
but developing a new communications service takes months to years

Even adding new instances of well-known services
is a time consuming process for conventional networks 

When a new service types requires new protocols, the timeline is
• protocol standardization (often in more than one SDO)
• hardware development
• interop testing 
• vendor marketing campaigns and operator acquisition cycles
• staff training
• deployment

This leads to a fundamental disconnect 
between software and networking development timescales

An important goal of SDN and NFV is 
to create new network functionalities at the speed of software

how long has it been since the first IPv6 RFC ?



Fundamentals of Communications Networks  6

2. Today’s communications world

Today’s infrastructures are composed of many different Network Elements (NEs)
• sensors, smartphones, notebooks, laptops, desk computers, servers, 
• DSL modems, Fiber transceivers,
• SONET/SDH ADMs, OTN switches, ROADMs, 
• Ethernet switches, IP routers, MPLS LSRs, BRAS, SGSN/GGSN, 
• NATs, Firewalls, IDS, CDN, WAN aceleration, DPI, 
• VoIP gateways, IP-PBXes, video streamers, 
• performance monitoring probes , performance enhancement middleboxes, 
• etc., etc., etc.

New and ever more complex NEs are being invented all the time,
and while equipment vendors like it that way 
Service Providers find it hard to shelve and power them all !

In addition, while service innovation is accelerating
the increasing sophistication of new services 
the requirement for backward compatibility
and the increasing number of different SDOs, consortia, and industry groups

which means that
it has become very hard to experiment with new networking ideas
NEs are taking longer to standardize, design, acquire, and learn how to operate
NEs are becoming more complex and expensive to maintain



Fundamentals of Communications Networks  7

2. The service provider crisis

time

$
m

ar
gi

n

Service Provider 
bankruptcy point

This is a qualitative picture of the service provider’s world
Revenue is at best increasing with number of users
Expenses are proportional to bandwidth – doubling every 9 months
This situation obviously can not continue forever !



Fundamentals of Communications Networks  8

Two complementary solutions

Software Defined Networks (SDN)
SDN advocates replacing standardized networking protocols

with centralized software applications 
that configure all the NEs in the network

Advantages:
• easy to experiment with new ideas
• control software development is much faster than protocol standardization
• centralized control enables stronger optimization
• functionality may be speedily deployed, relocated, and upgraded

Network Functions Virtualization (NFV)
NFV advocates replacing hardware network elements 

with software running on COTS computers
that may be housed in POPs and/or datacenters

Advantages:
• COTS server price and availability scales with end-user equipment
• functionality can be located where-ever most effective or inexpensive
• functionalities may be speedily combined, deployed, relocated, and upgraded



Fundamentals of Communications Networks  9

SDN



Fundamentals of Communications Networks  10

Abstractions

SDN was triggered by the development of networking technologies 
not keeping up with the speed of software application development 

Computer science theorists theorized 
that this derived from not having the required abstractions

In CS an abstraction is a representation 
that reveals semantics needed at a given level

while hiding implementation details
thus allowing a programmer to focus on necessary concepts 

without getting bogged down in unnecessary details

Programming is fast because programmers exploit abstractions

Example:
It is very slow to code directly in assembly language (with few abstractions, e.g. opcode mnemonics)
It is a bit faster to coding in a low-level language like C (additional abstractions : variables, structures)
It is much faster coding in high-level imperative language like Python 
It is much faster yet coding in a declarative language (coding has been abstracted away)
It is fastest coding in a domain-specific language (only contains the needed abstractions)
In contrast, in protocol design we return to bit level descriptions every time



Fundamentals of Communications Networks  11

Packet forwarding abstraction

The first abstraction relates to how network elements forward packets

At a high enough level of abstraction 
all network elements perform the same task 

Abstraction 1  Packet forwarding as a computational problem
The function of any network element (NE) is to
• receive a packet
• observe packet fields 
• apply algorithms (classification, decision logic)
• optionally edit the packet
• forward or discard the packet

For example

• An Ethernet switch observes MAC DA and VLAN tags, performs exact match, forwards the packet
• A router observes IP DA, performs LPM, updates TTL, forwards packet
• A firewall observes multiple fields, performs regular expression match, optionally discards packet

We can replace all of these NEs with a configurable whitebox switch



Fundamentals of Communications Networks  12

Network state and graph algorithms

How does a whitebox switch learn its required functionality ?

Forwarding decisions are optimal
when they are based on full global knowledge of the network

With full knowledge of topology and constraints
the path computation problem can be solved by a graph algorithm

While it may sometimes be possible to perform path computation (e.g., Dijkstra)
in a distributed manner

It makes more sense to perform them centrally

Abstraction 2  Routing as a computational problem
Replace distributed routing protocols with graph algorithms

performed at a central location 

Note with SDN, the pendulum that swung 
from the completely centralized PSTN 
to the completely distributed Internet

swings back to completely centralized control



Fundamentals of Communications Networks  13

Configuring the whitebox switch

How does a whitebox switch acquire the information needed to forward
that has been computed by an omniscient entity at a central location ?

Abstraction 3 Configuration
Whitebox switches are directly configured by an SDN controller

Conventional network elements have two parts:
1. smart but slow CPUs that create a Forwarding Information Base
2. fast but dumb switch fabrics that use the FIB

Whitebox switches only need the dumb part, thus
• eliminating distributed protocols
• not requiring intelligence

The API from the SDN controller down to the whitebox switches 
is conventionally called the southbound API (e.g., OpenFlow, ForCES)

Note that this SB API is in fact a protocol
but is a simple configuration protocol
not a distributed routing protocol



Fundamentals of Communications Networks  14

Separation of data and control

You will often hear stated that the defining attribute of SDN is 
the separation of the data and control planes 

This separation was not invented recently by SDN academics
Since the 1980s all well-designed communications systems 

have enforced logical separation of 3 planes :
• data plane (forwarding)
• control plane (e.g., routing )
• management plane (e.g., policy, commissioning, billing)

What SDN really does is to
1) insist on physical separation of data and control
2) erase the difference between control and management planes

data plane

control plane

management plane



Fundamentals of Communications Networks  15

Control or management

What happened to the management plane ?

Traditionally the distinction between control and management  was that :
• management had a human in the loop
• while the control plane was automatic

With the introduction of more sophisticated software
the human could often be removed from the loop

The difference that remains is that 
• the management plane is slow and centralized
• the control plane is fast and distributed

So, another way of looking at SDN
is to say that it merges 
the control plane 
into a single centralized management plane



Fundamentals of Communications Networks  16

SDN PC vs. distributed routing

Distributed routing protocols are limited to 
• finding simple connectivity
• minimizing number of hops (or other additive cost functions)

but find it hard to perform more sophisticated operations, such as
• guaranteeing isolation (privacy)
• optimizing paths under constraints
• setting up non-overlapping backup paths (the Suurballe problem)
• integrating networking functionalities (e.g., NAT, firewall) into paths

This is why MPLS created the Path Computation Element architecture

An SDN controller is omniscient (the God box)
and holds the entire network description as a graph
on which arbitrary optimization calculations can be performed

But centralization comes at a price
• the controller is a single point of failure

(more generally different CAP-theorem trade-offs are involved)

• the architecture is limited to a single network
• additional (overhead) bandwidth is required
• additional set-up delay may be incurred



Fundamentals of Communications Networks  17

Flows

It would be too slow for a whitebox switch
to query the centralized SDN controller
for every packet received

So we identify packets as belonging to flows

Abstraction 4   Flows (as in OpenFlow)
Packets are handled solely based on the flow to which they belong 

Flows are thus just like Forwarding Equivalence Classes 

Thus a flow may be determined by
• an IP prefix in an IP network
• a label in an MPLS network
• VLANs in VLAN cross-connect networks

The granularity of a flow depends on the application



Fundamentals of Communications Networks  18

Control plane abstraction

In the standard SDN architecture, the SDN controller is omniscient
but does not itself program the network
since that would limit development of new network functionalities

With software we create building blocks with defined APIs
which are then used, and perhaps inherited and extended, by programmers

With networking, each network application has a tailored-made control  plane
with its own element discovery, state distribution, failure recovery, etc. 

Note the subtle change of terminology we have just introduced
instead of calling switching, routing, load balancing, etc. network functions
we call them network applications (similar to software apps)

Abstraction 5  Northbound APIs instead of protocols
Replace control plane protocols with well-defined APIs to network applications

This abstraction hide details of the network from the network application
revealing high-level concepts, such as requesting connectivity between A and B
but hiding details unimportant to the application 

such as details of switches through which the path A → B passes



Fundamentals of Communications Networks  19

SDN overall architecture

Network

SDN 
controller

app app app app

Network Operating System

SDN 
switch

SDN 
switch

SDN 
switch

SDN 
switch

SDN 
switch

SDN 
switch

southbound interface
(e.g., OpenFlow, ForCES)

northbound interface



Fundamentals of Communications Networks  20

Network Operating System

For example, a computer operating system
• sits between user programs and the physical computer hardware 
• reveals high level functions (e.g., allocating a block of memory or writing to disk)

• hides hardware-specific details (e.g., memory chips and disk drives)

We can think of SDN as a Network Operating System

user
application

Computer Operating System

HW 
component

user
application

user
application

HW 
component

HW 
component

network
application

Network Operating System

whitebox
switch

network
application

network
application

whitebox
switch

whitebox
switch

Note: apps 
can be 
added 

without 
changing OS



Fundamentals of Communications Networks  21

SDN overlay model

We have been discussing the purist SDN model
where SDN builds an entire network using whiteboxes

For non-greenfield cases this model requires
upgrading (downgrading?) hardware to whitebox switches

An alternative model builds an SDN overlay network

The overlay tunnels traffic through the physical network
running SDN on top of switches that do not explicitly support SDN

Of course you may now need to administer two separate networks



Fundamentals of Communications Networks  22

NFV



Fundamentals of Communications Networks  23

Virtualization of computation

In the field of computation, there has been a major trend towards virtualization

Virtualization here means the creation of a virtual machine (VM) 
that acts like an independent physical computer

A VM is software that emulates hardware (e.g., an x86 CPU)
over which one can run software as if it is running on a physical computer

The VM runs on a host machine
and  creates a guest machine (e.g., an x86 environment)

A single host computer may host many fully independent guest VMs
and each VM may run different Operating Systems and/or applications

For example
• a datacenter may have many racks of server cards
• each server card may have many  (host) CPUs
• each CPU may run many (guest) VMs 

A hypervisor is software that enables creation and monitoring of VMs



Fundamentals of Communications Networks  24

Concretization and Virtualization

PHYSICS LOGICdedicated 
hardware

ASIC FPGA

special 
purpose 

processors

general
purpose
software

firmware

VIRTUALIZATION

CONCRETIZATION

Concretization means moving a task to the left
Justifications for concretization include : 

• cost savings for mass produced products
• miniaturization/packaging constraints
• need for high processing rates
• energy savings / power limitation / low heat dissipation

Virtualization is the opposite - moving a task to the right
(although frequently reserved for the extreme case of HW → SW)



Fundamentals of Communications Networks  25

Network Functions Virtualization

CPUs are not the only hardware device that can be virtualized

Many (but not all) NEs can be replaced by software running on a CPU or VM

This would enable
• using standard COTS hardware (whitebox servers)

– reducing CAPEX and OPEX

• fully implementing functionality in software
– reducing development and deployment cycle times, opening up the R&D market

• consolidating equipment types 
– reducing power consumption

• optionally concentrating network functions in datacenters or POPs
– obtaining further economies of scale. Enabling rapid scale-up and scale-down

For example, switches, routers, NATs, firewalls, IDS, etc.
are all good candidates for virtualization
as long as the data rates are not too high

Physical layer functions (e.g., Software Defined Radio) are not ideal candidates

High data-rate (core) NEs will probably remain in dedicated hardware



Fundamentals of Communications Networks  26

Potential VNFs

Potential Virtualized Network Functions

• forwarding elements: Ethernet switch, router, Broadband Network Gateway, NAT 

• virtual CPE: demarcation + network functions + VASes

• mobile network nodes: HLR/HSS, MME, SGSN, GGSN/PDN-GW, RNC, NodeB, eNodeB

• residential nodes: home router and set-top box functions 

• gateways: IPSec/SSL VPN gateways, IPv4-IPv6 conversion, tunneling encapsulations

• traffic analysis: DPI, QoE measurement

• QoS: service assurance, SLA monitoring, test and diagnostics

• NGN signalling: SBCs, IMS

• converged and network-wide functions: AAA servers, policy control, charging platforms

• application-level optimization: CDN, cache server, load balancer, application accelerator

• security functions: firewall, virus scanner, IDS/IPS, spam protection



Fundamentals of Communications Networks  27

Function relocation

Once a network functionality has been virtualized
it is relatively easy to relocate it

By relocation we mean 
placing a function somewhere other than its conventional location
e.g., at Points of Presence and Data Centers

Many (mistakenly) believe that the main reason for NFV
is to move networking functions to data centers
where one can benefit from economies of scale

Some telecomm functionalities need to reside at their conventional location
• Loopback testing
• E2E performance monitoring

but many don’t
• routing and path computation 
• billing/charging
• traffic management
• DoS attack blocking

Note: even nonvirtualized functions can be relocated



Fundamentals of Communications Networks  28

Example of relocation with SDN

SDN is, in fact, a specific example of function relocation 

In conventional IP networks routers perform 2 functions
• forwarding 

– observing the packet header
– consulting the Forwarding Information Base
– forwarding the packet

• routing
– communicating with neighboring routers to discover topology (routing protocols)
– runs routing algorithms (e.g., Dijkstra)
– populating the FIB used in packet forwarding

SDN enables moving the routing algorithms to a centralized location
• replace the router with a simpler but configurable whitebox switch
• install a centralized SDN controller

– runs the routing algorithms (internally – w/o on-the-wire protocols)
– configures the NEs by populating the FIB



Fundamentals of Communications Networks  29

Virtualization and Relocation of CPE

pCPE

Partial Virtualization

vCPEpvCPE

Full Virtualization

Full 
Relocation

Partial 
Relocation

Network

pvCPE vCPE vCPE vCPE

pCPE vCPE vCPE

Recent attention has been on NFV 
for Customer Premises Equipment



Fundamentals of Communications Networks  30

Distributed NFV

The idea of optimally placing virtualized network functions in the network
from edge (CPE) through aggregation through PoPs and HQs to datacenters

is called Distributed-NFV (DNFV)

Optimal location of a functionality needs to take into consideration:
• resource availability (computational power, storage, bandwidth)
• real-estate availability and costs
• energy and cooling
• management and maintenance
• other economies of scale
• security and privacy
• regulatory issues

For example, consider moving a DPI engine from where it is needed 
this requires sending the packets to be inspected to a remote DPI engine

If bandwidth is unavailable or expensive or excessive delay is added
then DPI must not be relocated 
even if computational resources are less expensive elsewhere!



Fundamentals of Communications Networks  31

ETSI NFV-ISG architecture



Fundamentals of Communications Networks  32

MANO ? VIM ? VNFM?  NFVO?

Traditional NEs have NMS (EMS) and perhaps are supported by an OSS

NFV has in addition the MANO (Management and Orchestration) containing :
• an orchestrator
• VNFM(s) (VNF Manager)
• VIM(s) (Virtual Infrastructure Manager)
• lots of reference points (interfaces) !

The VIM (usually OpenStack) manages NFVI resources in one NFVI domain
• life-cycle of virtual resources (e.g., set-up, maintenance, tear-down of VMs)
• inventory of VMs
• FM and PM of hardware and software resources
• exposes APIs to other managers

The VNFM manages VNFs in one VNF domain
• life-cycle of VNFs (e.g., set-up, maintenance, tear-down of VNF instances)
• inventory of VNFs
• FM and PM of VNFs

The NFVO is responsible for resource and service orchestration
• controls NFVI resources everywhere via VIMs
• creates end-to-end services via VNFMs



Fundamentals of Communications Networks  33

Joint SDN & NFV Optimization

work with TAU team – Boaz Patt-Shamir and Guy Even



Fundamentals of Communications Networks  34

Recap: rich communications services

Traditional communications services are pure connectivity services
transport data from A to B 

with constraints (e.g., minimum bandwidth, maximal delay)
with maximal efficiency (minimum cost, maximized revenue)

Modern communications services are richer
combining connectivity and network functionalities

e.g., firewall, NAT, load balancing, CDN, parental control, ...

We deal with a service provider that
• maintains a network of communications and computational resources
• maintains an inventory of VNFs
• dynamically sets up and tears down services
• charges based on 

– service requirements
– time between set-up and tear-down

The service provider employs an orchestrator to maximize profits
(profit is the difference between revenue and expenses)



Fundamentals of Communications Networks  35

DNFV Optimization Problems (1)

We should distinguish between 
• pure connectivity (transport) services
• services containing nontrivial functionalities

The first problem is the well-known path computation problem
for a pure connectivity service

Pure path computation problem (the problem solved by PCE)

Given:
• traffic source and sink points
• full topology information
• link and node resource information
• service bandwidth and delay requirements

Find the optimal path for a pure connectivity service



Fundamentals of Communications Networks  36

DNFV Optimization Problems (2)

Next, we consider the pure DNFV placement problem

In this problem we assume that the path computation has been handled
by 
• manual static routing   or 
• via routing protocols    or 
• via path computation

Pure D-NFV placement optimization problem

Given:
• the path taken by the traffic 

(and the availability of extra bandwidth if needed)
• the VNF(s) to be installed, including computational requirements
• for multiple VNFs – the (partial) ordering of VNFs
• places where computational resources are available, and present loadings
• D-NFV criteria and constraints 

Find the optimal D-NFV placement(s)



Fundamentals of Communications Networks  37

DNFV Optimization Problems (3)

Separate path computation and VNF placement is obviously suboptimal
unless plentiful computational resources are available along the path

Joint PC/D-NFV optimization 

Given:
• traffic source and sink points
• full topology information
• link and node resource information
• service bandwidth and delay requirements
• VNF(s) to be installed, including computational requirements
• for multiple VNFs – the (partial) ordering of VNFs
• places where computational resources are available, and present loadings
• D-NFV criteria and constraints 

Find the optimal path and VNF placement(s) 



Fundamentals of Communications Networks  38

On-line optimization

A batch (off-line) algorithm receives the list of all services to be set up
and simultaneously finds all the allocations for a clean network

We require an on-line algorithm
that services requests of unknown duration as they come in 

We do not allow pre-emption or re-optimization of service already set-up

The on-line case is harder since we don’t know ahead of time 
whether it is worthwhile to use up resources for a given request 
and risk having to deny some later request that may be more profitable

Simple example
– first request requires 100% of a resource and pays x
– later requests require some of that resource and together pay y>>x

How do we know whether to accept or deny the first request ? 
– if we accept, we lose y-x if later requests do arrive
– if we deny and later requests never arrive, we lose x



Fundamentals of Communications Networks  39

Formal definition of the joint problem

Known
• full network topology graph

– link and node current resource loading information
• places where computational resources are available

– resource availability
• other SDN or NFV criteria and constraints

Service request definition
• traffic ingress and egress points
• service data-rate and delay requirements
• sequence of VNF(s) to be installed 

Note: we do not yet support partial ordering of VNFs 
other than by exhaustively testing every possible order

– computational (including memory, storage, etc.) requirements
• service set-up or tear-down ?

Find
• the optimal path and VNF placement(s)



Fundamentals of Communications Networks  40

The solution

The new solution combines two ideas:

1. use of Cartesian Graph Product

2. use of an ACCEPT/STANDBY mechanism

The first idea is a method of transforming the joint problem 
into a conventional path computation problem on a single network graph

switch (network resource)

server (compute resource)



Fundamentals of Communications Networks  41

Step 1 : Cartesian Product

PRODUCT GRAPH

The product graph is much larger than the original graph, but still manageable

ingress

egress

Assume 2 VNFs : A and B

A

A
A

B

B
ingress

egress



Fundamentals of Communications Networks  42

Performance of competitive algorithms

The standard on-line mechanism receives service requests, and returns 
• ACCEPT + service routing and placement
• DENY

Given an on-line optimization problem
we can quantify the (worst case) performance of an algorithm ALG as follows

For each input 𝐼 define
• OPT 𝐼 : profit of best possible solution 

one that knows the future, can pre-empt/reroute/load-balance, etc.
• ALG 𝐼 : profit obtained by the algorithm

The algorithm’s competitive ratio is defined to be 𝐂 =
𝐦𝐚𝐱

all inputs 𝐼
OPT 𝐼

ALG 𝐼

This means that the algorithm’s profit is at least 1/C times the optimal profit
Good competitive algorithms have small C !  (Beware of alternative definitions!)

The AAP algorithm has competitive factor 𝑂(log 𝑛) n= number of network nodes

assuming
• small demands – no service request consumes the majority of any resource
• requests are of known finite durations



Fundamentals of Communications Networks  43

Step 2: ACCEPT/STANDBY response

In our problem, services may potentially indefinite duration 
leading to potentially dismal worst case performance

Simple example
– reject service request that would have indefinitely paid x per unit time 
– no further service requests are ever received  

To avoid this problem, we never reject a request, instead we return
• ACCEPT + service routing and placement
• STANDBY – service request placed on hold until can be serviced
note that the service request may be rescinded before it is ever serviced!

We still assume that no request consumes a sizeable amount of any resource

The mechanism has a competitive ratio of 𝑂(𝑘 log 𝑛)
where 𝑘 is the maximum number of VNFs in a service request

New ideas may improve this to 𝑂(log(𝑛𝑘))



Fundamentals of Communications Networks  44

Summary

By combining the two ideas

1. use of Cartesian Graph Product

2. use of an ACCEPT/STANDBY mechanism

we obtain a tractable on-line joint SDN/NFV optimization algorithm



Fundamentals of Communications Networks  45

Hype and Doubts



Fundamentals of Communications Networks  46

Doubts

On the other hand
there are some very good reasons that may lead us to doubt 
that SDN and NFV will ever completely replace all networking technologies

The four most important (in my opinion) are :
1. Moore’s law vs. Butter’s law (NFV)
2. Consequences of SDN layer violations
3. CAP theorem tradeoffs (SDN)
4. Scalability of SDN
5. Robustness (SDN)



Fundamentals of Communications Networks  47

Moore’s law vs. Butter’s law

Moore’s law is being interpreted to state
computation power is doubling per unit price about every two years

However, this reasoning neglects Butter’s Law that states
optical transmission speeds are doubling every nine months

So, if we can’t economically perform the function in NFV now
we may be able to perform it at today’s data-rates next year

But we certainly won’t be able to perform it at the required data-rates !

The driving bandwidth will increase faster than Moore’s law, due to
• increased penetration of terminals (cellphones, laptops)
• increased number of data-hungry apps on each terminal



Fundamentals of Communications Networks  48

SDN layer violations

SDN’s main tenet is that packet forwarding is a computational problem
• receive packet
• observe fields 
• apply algorithm(classification, decision logic)
• optionally edit packet
• forward or discard packet

In principle an SDN switch could do any computation on any fields
for example forwarding could depend on an arbitrary function of
packet fields (MAC addresses, IP addresses, TCP ports, L7 fields, …)

While conventional network elements are limited to their own scope
Ethernet switches look at MAC addresses + VLAN, but not IP and above
routers look at IP addresses, but not at MAC or L4 and above
MPLS LSRs look at top of MPLS stack

A layer violation occurs when a NE observes / modifies a field outside its scope
(e.g., DPI, NATs, ECMP peaking under MPLS stack, 1588 TCs, …)



Fundamentals of Communications Networks  49

Consequences of layer violations

Client/server (G.80x) layering enables Service Providers 
• to serve a higher-layer SP
• to be served by a lower-layer SP

Layer violations may lead to security breaches, such as :
• billing avoidance
• misrouting  or loss of information
• information theft
• session highjacking
• information tampering

Layer respect is often automatically enforced by network element functionality

A fully programmable SDN forwarding element creates layer violations
these may have unwanted consequences, due to :

• programming bugs    
• malicious use



Fundamentals of Communications Networks  50

The CAP Theorem

There are three desirable characteristics 
of any distributed computational system

1. Consistency
(get the same answer no matter which computational element responds)

2. Availability
(get an answer without unnecessary delay)

3. Partition tolerance
(get an answer even if there a breaks in the system)

The CAP (Brewer’s) theorem states that you can have any 2 of these
but not all 3 !

SDN teaches us that routing/forwarding packets is a computational problem
so a network is a distributed computational system

So networks can have at most 2 of these characteristics

Which characteristics do we need, and which can we forgo ?



Fundamentals of Communications Networks  51

CAP: the SP Network Choice

SPs pay dearly for service failures
not only in lost revenues, but in SLA violation penalties

Once set up, the network control plane guarantees:
• high Availability (e.g., five nines)   and 
• high Partition tolerance (e.g., 50 millisecond restoration times)

So, Consistency must suffer
• black-holed packets  (compensated by TTL fields, CV testing, etc.)

• eventual consistency (but steady state may never be reached)

When a new service is being set up (by the management plane)
• Consistency is emphasized
• Availability suffers (thus, set-up is a lengthy process!)

• Partitions are not allowed (faults during commissioning trigger manual operations)

These are conscious decisions on the part of the SP
The precise trade-off is maintained by a judicious combination 

of centralized management and distributed control planes



Fundamentals of Communications Networks  52

CAP: the SDN Choice

SDN has emphasized consistency (perhaps natural for software proponents)

So such SDNs must forgo either availability or partition tolerance (or both)
Either alternative may rule out use of SDN in SP networks

Relying solely on a single1 centralized controller 
(which in communications parlance is a pure management system)

may lead to more efficient bandwidth utilization
but means giving up partition tolerance

However, there are no specific mechanisms to attain availability either !

Automatic protection switching needs to be performed quickly

which can not be handled by a remote controller alone2

1 Using multiple collocated controllers does not protect against connectivity failures.
Using multiple non-collocated controllers requires synchronization, which can lead to low availability.

2 There are solutions, such as triggering preconfigured back-up paths,
but present SDN protocols do not support conditional forwarding very well.



Fundamentals of Communications Networks  53

Scalability

In centralized protocols  (e.g., NMS, PCE, SS7, OpenFlow)
all network elements talk with a centralized management system  (AKA Godbox)

that collects information, makes decisions, and configures  elements 
In distributed  protocols  (e.g., STP, routing protocols)

each network element talks to its neighbors
and makes local decisions based currently available information

Distributed protocols are great at discovering connectivity 
but are not best for more general optimization

Distributed protocols scale without limit
but may take a long time to completely converge (only eventual consistency)

Centralized protocols can readily solve complex network optimization problems
but as the number of network elements increases
the centralized element becomes overloaded

Dividing up the centralized element based on clustering network elements
is the first step towards a distributed system (BGP works this way)



Fundamentals of Communications Networks  54

Robustness

SDN academicians complain about 
the brittleness / fragility of communications protocols

As opposed to the robustness their approach can bring

To investigate this claim, we need to understand what robustness means

We say that a system is robust to X
when it can continue functioning even when X happens

For example, 
• A communications network is robust to failures

if it continues functioning even when links or network elements fail
• A communications network is robust to capacity increase

if it continues functioning 
when the capacity it is required to handle increases

So it is meaningless to say that a system is robust without saying to what !



Fundamentals of Communications Networks  55

Robustness    (cont.)

Unfortunately,  robustness to X may contradict robustness to Y

For example, 
• In order to achieve robustness to failures

the network is designed with redundancy (e.g., 1+1)
• In order to achieve robustness to capacity increase

the network is designed for efficiency, i.e., with no redundancy

Thus networks can not be designed to be robust to everything
Instead, networks are designed to profitably provide services

The X that seems to be most on the minds of SDN proponents is
creation of new types of services

In the past, new service type creation was infrequent
so networks were not required to be robust to it

This is an area where SDN can make a big difference !



Fundamentals of Communications Networks  56

OpenFlow



Fundamentals of Communications Networks  57

What is OpenFlow ?

OpenFlow is an SDN southbound interface –
i.e., a protocol from an SDN controller to an SDN switch (whitebox)
that enables configuring forwarding behavior

What makes OpenFlow different from similar protocols is its switch model
it assumes that the SDN switch is based on TCAM matcher(s)
so flows are identified by exact match with wildcards on header field
supported header fields include:

• Ethernet - DA, SA, EtherType, VLAN
• MPLS – top label and BoS bit
• IP (v4 or v6) – DA, SA, protocol, DSCP, ECN
• TCP/UDP ports

OpenFlow grew out of Ethane and is now developed by the ONF
it has gone through several major versions
the latest is 1.5.0



Fundamentals of Communications Networks  58

OpenFlow

The OpenFlow specifications describe
• the southbound protocol between OF controller and OF switches
• the operation of the OF switch

The OpenFlow specifications do not define  
• the northbound interface from OF  controller to applications
• how to boot the network
• how an E2E path is set up by touching multiple OF switches
• how to configure or maintain an OF switch (which can be done by of-config)

The OF-CONFIG specification defines
a configuration and management protocol between

OF configuration point and OF capable switch 
• configures which OpenFlow controller(s) to use
• configures queues and ports 
• remotely changes port status (e.g., up/down) 
• configures certificates
• switch capability discovery 
• configuration of tunnel types (IP-in-GRE, VxLAN ) 

OF 
switch

OF 
switch

OF 
switch

OF capable switch

OFOFOF

OF-CONFIG

NB for Open vSwitch
OVSDB (RFC 7047)     
can also be used 



Fundamentals of Communications Networks  59

OF matching

The basic entity in OpenFlow is the flow
A flow is a sequence of packets 

that are forwarded through the network in the same way

Packets are classified as belonging to flows 
based on match fields (switch ingress port, packet headers, metadata)
detailed in a flow table (list of match criteria)

Only a finite set of match fields is presently defined
and an even smaller set that must be supported

The matching operation is exact match
with certain fields allowing bit-masking

Since OF 1.1 the matching proceeds in a pipeline

Note: this limited type of matching is too primitive 
to support a complete NFV solution
(it is even too primitive to support IP forwarding, let alone NAT, firewall ,or IDS!)

However, the assumption is that DPI is performed by the network application
and all the relevant packets will be easy to match



Fundamentals of Communications Networks  60

OF flow table

The flow table is populated by the controller

The incoming packet is matched by comparing to match fields

For simplicity, matching is exact match to a static set of fields

If matched, actions are performed and counters are updated

Entries have priorities and the highest priority match succeeds

Actions include editing, metering,  and forwarding

match fields actions counters

match fields actions counters

match fields actions counters

actions counters

flow entry

flow miss entry



Fundamentals of Communications Networks  61

OpenFlow 1.3 basic match fields

• Switch input port
• Physical input port
• Metadata 

• Ethernet DA
• Ethernet SA
• EtherType
• VLAN id
• VLAN priority

• IP DSCP 
• IP ECN 
• IP protocol
• IPv4 SA
• IPv4 DA
• IPv6 SA
• IPv6 DA

• TCP source port
• TCP destination port
• UDP source port
• UDP destination port
• SCTP source port
• SCTP destination port

• ICMP type
• ICMP code
• ARP opcode
• ARP source IPv4 

address
• ARP target IPv4 address
• ARP source HW address
• ARP target HW address

• IPv6 Flow Label
• ICMPv6 type
• ICMPv6 code
• Target address for IPv6 ND
• Source link-layer for ND
• Target link-layer for ND
• IPv6 Extension Header 

pseudo-field

• MPLS label
• MPLS BoS bit

• PBB I-SID

• Logical Port Metadata  
(GRE, MPLS, VxLAN)

bold match fields MUST be supported



Fundamentals of Communications Networks  62

OpenFlow Switch Operation

There are two different kinds of OpenFlow compliant switches 
• OF-only  all forwarding is based on OpenFlow
• OF-hybrid supports conventional and OpenFlow forwarding

Hybrid switches will use some mechanism (e.g., VLAN ID ) to differentiate 
between packets to be forwarded by conventional processing
and those that are handled by OF

The switch first has to classify an incoming packet as
• conventional forwarding
• OF protocol packet from controller
• packet to be sent to flow table(s)

OF forwarding is accomplished by a flow table or since 1.1 by flow tables
An OpenFlow compliant switch must contain at least one flow table

OF also collects PM statistics (counters) 
and has basic rate-limiting (metering) capabilities

An OF switch can not usually react by itself to network events 
but there is a group mechanism that can be used for limited reactions



Fundamentals of Communications Networks  63

Matching fields

An OF flow table can match multiple fields 

So a single table may require 
ingress port = P                      and
source MAC address = SM   and destination MAC address = DM and
VLAN ID = VID and EtherType = ET and
source IP address = SI and destination IP address = DI and
IP protocol number = P        and            
source TCP port  = ST            and destination TCP port = DT

This kind of exact match of many fields is expensive in software
but can readily implemented via TCAMs

OF 1.0 had only a single flow table
which led to overly limited hardware implementations
since practical TCAMs are limited to several thousand entries

OF 1.1 introduced multiple tables for scalability

ingress
port

Eth
DA

Eth
SA

VID ET IP
pro

TCP
SP

IP
SA

IP
DA

TCP
DP



Fundamentals of Communications Networks  64

OF 1.1+ flow tables

Table matching
• each flow table is ordered by priority
• highest priority match is used (match can be made “negative” using drop action)

• matching is exact match with certain fields allowing bit masking
• table may specify ANY to wildcard the field
• fields matched may have been modified in a previous step

Although the pipeline was introduced mainly for scalability
it gives the matching syntax more expressibility to (although no additional semantics)

In addition to the verbose 
if (field1=value1) AND (field2=value2) then …
if (field1=value3) AND (field2=value4) then …

it is now possible to accommodate
if (field1=value1) then if (field2=value2)  then …

else if (field2=value4)  then …

flow 
table

0

packet
in

flow 
table

1
… flow 

table
n

action
set

packet
out



Fundamentals of Communications Networks  65

Unmatched packets

What happens when no match is found in the flow table ?

A flow table may contain a flow miss entry
to catch unmatched packets

The flow miss entry must be inserted by the controller just like any other entry
and is defined as wildcard on all fields, and lowest priority

The flow miss entry may be configured to :
– discard packet 
– forward to a subsequent table
– forward (OF-encapsulated) packet to controller
– use “normal” (conventional) forwarding (for OF-hybrid switches)

If there is no flow miss entry
the packet is by default discarded

but this behavior may be changed via of-config



Fundamentals of Communications Networks  66

OF switch ports

The ports of an OpenFlow switch can be physical or logical 

The following ports are defined :

• physical  ports (connected to switch hardware interface)

• logical ports connected to tunnels (tunnel ID and physical port are reported to controller)

• ALL output port (packet sent to all ports except input and blocked ports)

• CONTROLLER  packet from or to controller

• TABLE  represents start of pipeline

• IN_PORT output port which represents the packet’s input port

• ANY  wildcard port

• LOCAL optional – switch local stack for connection over network

• NORMAL optional port sends packet for conventional processing (hybrid switches only)

• FLOOD output port sends packet for conventional flooding



Fundamentals of Communications Networks  67

Instructions

Each flow entry contains an instruction set to be executed upon match

Instructions include:

• Metering : rate limit the flow  (may result in packet being dropped)

• Apply-Actions  : causes actions in action list to be executed immediately
(may result in packet modification)

• Write-Actions / Clear-Actions : changes action set associated with packet
which are performed  when pipeline processing is over

• Write-Metadata : writes metadata into metadata field associated with packet

• Goto-Table : indicates the next flow table in the pipeline
if the match was found in flow table k

then goto-table m must obey m > k 



Fundamentals of Communications Networks  68

Actions

OF enables performing actions on packets
• output packet to a specified port 
• drop packet (if no actions are specified)
• apply group bucket actions (to be explained later)
• overwrite packet header fields
• copy or decrement TTL value
• push or pop push MPLS label or VLAN tag
• set QoS queue (into which the packet will be placed before forwarding)

Action lists are performed immediately upon match
• actions are accumulatively performed in the order specified in the list
• particular action types may be performed multiple times
• further pipeline processing is on the modified packet

Action sets are performed at the end of pipeline processing
• actions are performed in the order specified in OF specification
• actions can only be performed once

mandatory to support

optional to support



Fundamentals of Communications Networks  69

Meters

OF is not very strong in QoS features
but does have a metering mechanism

A flow entry can specify a meter, and the meter measures and limits the 
aggregate rate of all flows to which it is attached

The meter can be used directly for simple rate-limiting (by discarding)
or can be combined with DSCSP remarking for DiffServ mapping

Each meter can have several meter bands
if the meter rate surpasses a meter band, the configured action takes place

where possible actions are 
• drop
• increase DSCP drop precedence



Fundamentals of Communications Networks  70

OpenFlow statistics

OF switches maintain counters for every
• flow table
• flow entry
• port
• queue
• group
• group bucket
• meter
• meter band

Counters are unsigned integers and wrap around without overflow indication

Counters may count received/transmitted packets, bytes, or durations

See table 5 of the OF specification for the list of mandatory and optional counters



Fundamentals of Communications Networks  71

Flow removal and expiry

Flows may be explicitly deleted by the controller at any time

However, flows may be preconfigured with finite lifetimes
and are automatically removed upon expiry

Each flow entry has two timeouts

• hard_timeout : if non-zero, the flow times out after X seconds

• idle_timeout :   if non-zero, the flow times out 
after not receiving a packet for X seconds 

When a flow is removed for any reason, 
there is flag which requires the switch to inform the controller 

• that the flow has been removed
• the reason for its removal (expiry/delete)
• the lifetime of the flow
• statistics of the flow



Fundamentals of Communications Networks  72

Groups

Groups enable performing some set of actions on multiple flows
thus common actions can be modified once, instead of per flow

Groups also enable additional functionalities, such as 
• replicating packets for multicast
• load balancing
• protection switch

Group operations are defined in group table

Group tables provide functionality not available in flow table

While flow tables enable dropping or forwarding to one port
group tables enable (via group type) forwarding to :

• a random port from a group of ports (load-balancing) 
• the first live port in a group of ports (for failover)
• all ports in a group of ports (packet replicated for multicasting)

Action buckets are triggered by type:
• All execute all buckets in group
• Indirect execute one defined bucket
• Select (optional)  execute a bucket (via round-robin, or hash algorithm)
• Fast failover (optional)  execute the first live bucket

ID type counters action buckets



Fundamentals of Communications Networks  73

Slicings

Network slicing

A network can be divided into isolated slices
each with different behavior
each controlled by different controller

Thus the same switches can treat different packets in completely different ways
(for example, L2 switch some packets, L3 route others)

Bandwidth slicing

OpenFlow supports multiple queues per output port
in order to provide some minimum data bandwidth per flow

This is also called slicing since it provides a slice of the bandwidth to each queue

Queues may be configured to have  :
• given length
• minimal/maximal bandwidth
• other properties



Fundamentals of Communications Networks  74

OpenFlow protocol packet format
O

p
e

n
Fl

o
w

Ethernet header

IP header  (20B)

TCP header with destination port 6633 or 6653 (20B)

Version (1B)
0x01/2/3/4

Type (1B) Length (2B)

Transaction ID (4B)

Type-specific  information

OF runs over TCP (optionally SSL for secure operation) using port 6633
and is specified by C structs

OF is a very low-level specification (assembly-language-like)



Fundamentals of Communications Networks  75

OpenFlow messages

The OF protocol was built to be minimal and powerful

There are 3 types of OpenFlow messages :

OF controller to switch 
• populates flow tables which SDN switch uses to forward
• request statistics

OF switch to controller  (asynchronous messages) 
• packet/byte counters for defined flows
• sends packets not matching a defined flow

Symmetric messages
• hellos (startup)
• echoes (heartbeats, measure control path latency)
• experimental messages for extensions



Fundamentals of Communications Networks  76

OpenFlow message types

Symmetric messages
0 HELLO
1 ERROR
2 ECHO_REQUEST
3 ECHO_REPLY
4 EXPERIMENTER

Switch configuration
5 FEATURES_REQUEST
6 FEATURES_REPLY
7 GET_CONFIG_REQUEST
8 GET_CONFIG_REPLY
9 SET_CONFIG

Asynchronous messages
10 PACKET_IN = 10
11 FLOW_REMOVED = 11
12 PORT_STATUS = 12

Controller command messages
13 PACKET_OUT 
14 FLOW_MOD 
15 GROUP_MOD 
16 PORT_MOD 
17 TABLE_MOD 

Multipart messages
18 MULTIPART_REQUEST
19 MULTIPART_REPLY 

Barrier messages
20 BARRIER_REQUEST 
21 BARRIER_REPLY 

Queue Configuration messages
22 QUEUE_GET_CONFIG_REQUEST
23 QUEUE_GET_CONFIG_REPLY 

Controller role change request messages
24 ROLE_REQUEST 
25 ROLE_REPLY 

Asynchronous message configuration
26 GET_ASYNC_REQUEST 
27 GET_ASYNC_REPLY 
28 SET_ASYNC 

Meters and rate limiters configuration
29 METER_MOD 

Interestingly, OF uses a protocol version and TLVs for extensibility
These are 2 generic control plane mechanisms, 

of the type that SDN claims don’t exist …



Fundamentals of Communications Networks  77

Session setup and maintenance

An OF switch may contain default flow entries to use
before connecting with a controller

The switch will boot into a special failure mode

An OF switch is usually pre-configured with the IP address of a controller

An OF switch may establish communication with multiple controllers in order 
to improve reliability or scalability; the hand-over is managed by the controllers.

OF is best run over a secure connection (TLS/SSL),
but can be run over unprotected TCP

Hello messages are exchanged between switch and controller upon startup
hellos contain version number and optionally other data 

Echo_Request and Echo_reply are used to verify connection liveliness
and optionally to measure its latency or bandwidth

Experimenter messages are for experimentation with new OF features 

If a session is interrupted by connection failure
the OF switch continues operation with the current configuration

Upon re-establishing connection the controller may delete all flow entries



Fundamentals of Communications Networks  78

Bootstrapping

How does the OF controller communicate with OF switches 
before OF has set up the network ?

The OF specification explicitly avoids this question
• one may assume conventional IP forwarding to pre-exist
• one can use spanning tree algorithm with controller as root,

once switch discovers controller it sends topology information

How are flows initially configured ?

The specification allows two methods
• proactive (push) flows are set up without first receiving packets
• reactively (pull) flows are only set up after a packet has been received

A network may mix the two methods

Service Providers may prefer proactive configuration
while enterprises may prefer reactive



Fundamentals of Communications Networks  79

Barrier message

An OF switch does not explicitly acknowledge message receipt or execution

OF switches may arbitrarily reorder message execution 
in order to maximize performance 

When the order in which the switch executes messages is important
or an explicit acknowledgement is required

the controller can send a Barrier_Request message

Upon receiving a barrier request
the switch must finish processing all previously received messages
before executing any new messages

Once all old messages have been executed
the switch sends a Barrier_Reply message back to the controller


