Finding poles and zeros of a filter.

Let’s start with a filter in the usual (ay, by,) form.
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Yn = Tp — El'n—l + §$n—2 —Yn—1 — §yn—2

First, we create the symmetric (g, 8,,) form by moving all the y terms to
the left side.
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Yn + Yn—1 + §yn—2 =Tn — §$n—1 + §$n—2

Next, we write this as an equation for signals (rather than an equation for
values in the time domain).
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(1 + 2_1 + 52_2> Yy = (1 - —2_1 + 52_2> T

Now we take the z transform of both sides, using the fundamental theorem
72T (27 x) = 27 12T ().

(1 + 27 4 %z_2> Y(2)= (1 - gz_l + %z_2> X(z)

This means that

Y(2) = (134 3e7) X(2)200
(14271 +5272)

But Y (z) = H(z)X(2) so we have found the transfer function of this filter:
(1 — %z_l + %z_z)

(14271 +4272)

H(z)=

Multiplying top and bottom by 22 we obtain

(z2 - %z—l—%)

A= (z2 + 2+ %)



which can be factored as follows:

He = =)

(z+ 30 +1)(z+3(1-1)

which is a rational function (the ratio of two polynomials in z).
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The zeros of the transfer function are the roots of the polynomial in the
numerator. These are easily seen to be 1 and %

The poles of the transfer function are the roots of the polynomial in the
denominator. A little algebra shows that these are —(1 & 1).

We see that there are zeros to the left of the y axis (low frequencies), includ-
ing on at DC, and there are poles to the right of the y axis (high frequencies),
so we can conclude that this is a high-pass filter. To understand this, you can
input DC (z, = ...4+1+141+41...) and Nyquist (z,, =...—1+1—-1+1...)
to the original equation in the time domain and see what you get. Alterna-
tively, look at the transfer function only on the unit circle by substituting
z = " and find the frequency response H (w).

Finally, we can draw the pole-zero diagram of the filter, which determines
the filter to within a gain factor.



