
Part 1
Signals

0368.3464

עיבוד ספרתי של אותות

Digital Signal Processing for Computer Science

AKA

Digital Signal Processing – Algorithms and Applications

WARNING: This is a very different course from DSP for Engineering students
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The course

◼ Always check the Moodle

◼ We’ll start at 17:10

◼ One break 18:30-1845, finish at 19:45
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Requirements

◼ Lecture attendance is mandatory 

– attendance checked from the third lecture on

– active participation is better

– if you can’t make it now and again – there will be recordings

– 2/3 participation is required to take the final exam

◼ No homework assignments

◼ Problems?  use the Moodle forum
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The course text
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WWW.DSPCSP.COM

Digital

Signal

Processing

       a

Computer

Science

Perspective

http://www.dspcsp.com/


Why did I write this book?

The book started in a course I gave back in 1996

Until DSPCSP only engineering students learned DSP

and DSP is mostly programming!

Engineering students understood DSP

but not algorithms and not how to program

(one well-known DSP book by an Israeli author

apologizes for introducing the FFT algorithm!)

Computer Science students knew algorithms and programming

but the existing books were incomprehensible to them

(and its not just the strange usage of j = √-1

it is the whole mindset)

This book and course bridges the gap!

and there are now many more books like it (but not as good ☺)
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A few more things

◼ The course will focus on understanding the main concepts

not mathematical formulas or formal proofs of theorems

◼ Hopefully, you will come away with an understanding

of how many many things work nowadays

and will remember these for many years

◼ If there are applications that interest you

e.g., radar, predicting stock market trends, musical effects, …

we can talk about some of them in the course
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Course Outline

1. Signals (analog and digital)
2. Spectrum (frequency domain)
3. Sampling
4. Transforms
5. Systems 
6. Filters
7. Convolution 
8. MA, AR, ARMA filters  
9. System identification 
10. Graph theory
11. FFT
12. DSP processors
13. Correlation and Adaptation
14. Speech signal processing 
15. Data communications
16. …

PART 1

SIGNALS

PART 2

SYSTEMS

PART 3

ALGORITHMS

PART 4

APPLICATIONS



Questions?

Any questions about logistics?

(Please don’t ask about the final exam yet …)
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Motivation

What is DSP good for?

You are using 

Digital Signal Processing

right now

and are probably carrying a few 

Digital Signal Processors 

with you right now!

Y(J)S   DSP     Slide 9



What is this?
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BOSS RC-505 Loop Station

Let’s see it in (in)action 

Let’s see someone who really knows about DSP

Some music effects are easy to understand

https://www.youtube.com/watch?v=9SNT1Oz_lbc
https://www.youtube.com/watch?v=dIh8KBOOkYU


How does GPS work?

But what signals do the satellites transmit?

and how does the GPS receiver know 

WHEN a signal was received?
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GPS and the quest for Pizza

https://www.youtube.com/watch?v=RSA3feQ9gKk


Telephony

How many of you have seen one of these?

How many of you still have one of these? 

How many of you have used one of these?

One of these?
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Wonderful tones!

◼ dial and busy

◼ dial and ring

◼ different DTMF tones

◼ T.30 fax

◼ V.34 modem

◼ different answer tones

◼ musical instruments
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http://www.dspcsp.com/lectures/dspintro/1busy.wav
http://www.dspcsp.com/lectures/dspintro/2ans.wav
http://www.dspcsp.com/lectures/dspintro/dtmf123.wav
http://www.dspcsp.com/lectures/dspintro/3T30.wav
http://www.dspcsp.com/lectures/dspintro/4v34.wav
http://www.dspcsp.com/lectures/dspintro/ans123.wav
http://www.dspcsp.com/lectures/dspintro/inst.mid


5G

We have all heard that 5G is the NEXT THING

It is so much better than 4G …

How does it do it?
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The 5G refrigerator
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Speech

◼ Speech synthesis – text to speech (demo)

◼ Speech recognition – speech to text (demo)

◼ Speaker recognition

◼ Speaker verification

◼ Speech compression

◼ Dynamic Time Warping

◼ Language recognition

◼ Speech polygraph

Y(J)S   DSP     Slide 16

http://www.dspcsp.com/tau/dsp/dspInteresting.mp3
https://www.google.com/intl/en/chrome/demos/speech.html


Deep fakes

I’m sure you have all heard this
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https://www.youtube.com/watch?v=cQ54GDm1eL0


Classifying Encrypted Traffic

We all want our Internet traffic to be private

but we also want good Quality of Experience

How can an Internet Service Provider do this?
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Let’s start - What is DSP?

Digital Signal Processing

Digital (Signal Processing)

עיבוד ספרתי של אותות

(Digital Signal) Processing

עיבוד של אותות ספרתיים
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What is a signal?

There is no such thing as a signal !

But there is an analog signal  and   a digital signal

An analog signal s(t) is 

a real function of a single variable called time (t)

But not just any function – in a moment we will see conditions

A digital signal sn is

a real sequence with a single index called (discrete) time (n)

But not just any sequence – in a moment we will see conditions

And there is a connection between analog and digital signals !
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What isn’t a signal? (Part 1)

◼ Complex functions z(t) or sequences zn

(they aren’t real!)

◼ Images   I(x,y)

(it is two dimensional – not a scalar function/sequence)

◼ Videos   v(x,y,t)

(it is three dimensional)

◼ Waves   w(x,t)

(they are functions of space and time, not just of time)

◼ Information (I hope you know what that means …)

(but signals can carry information)
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DSP

Digital Signal Processing    vs.     Analog Signal   Processing

Why DSP ?  use (digital) computer instead of (analog) electronics

◼ more flexible

– new functionality requires code changes, not component changes

◼ more accurate 

– even simple amplification can not be done exactly in electronics

◼ more stable

– code performs consistently

◼ more sophisticated

– can perform more complex algorithms (e.g., SW receiver)

However

◼ digital computers only process sequences of numbers

– not analog signals

◼ requires converting analog signals to digital domain for processing

◼ and digital signals back to analog domain
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Is it worthwhile?
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filter A/D D/A filterx(t) y(t)

x(t) y(t)

???

Yes, because of

◼ feasibility (there are operations that are impossible in analog)

◼ flexibility (it is very difficult to upgrade analog hardware)

◼ accuracy (even simple gain is not completely accurate in analog)

Norbert Wiener
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Signals

Analog signal

s(t)   
continuous time 
-  < t < +

Digital signal

          sn  
discrete time
n = -  … +  
       (unlike sequences in math)

Physicality requirements
◼ s values are real
◼ s values defined for all times
◼ Finite energy
◼ Finite bandwidth

Mathematical usage
◼ s may be complex
◼ s may be singular
◼ Infinite energy allowed
◼ Infinite bandwidth allowed

Energy = how "big" the signal is

Bandwidth = how "fast" the signal is

(we’ll see the exact definitions later)



Show me the money!

Why are finite energy and bandwidth physicality requirements?

Energy of a signal is related to energy in physics

energy is conserved, so we are willing to pay for it!

(electric bill, gas for car, food)

A signal with infinite energy 

would cost infinite money to generate!

Bandwidth of a signal 

is related to how much information the signal carries

information always decreases (entropy always increases)

so we are willing to pay for it!

(Internet, cellular, books, newspapers)

A signal with infinite bandwidth

would cost infinite money to generate!
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Energy

How can we capture the size of a signal? 

the maximum value?

the average value ?

both of these are zero! 

(this is the DC component!)

The natural definition is

𝐸 = ∞−

∞
|𝑠 𝑡 |2 𝑑𝑡 𝐸 = σ𝑛=−∞

∞ |𝑠𝑛|2

Can you think of other good definitions?
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Handling infinite energy

Sinusoids

are among the most important signals we will use

But are infinite in extent and thus have infinite energy

So we fix them (limit them to a finite time duration)

by multiplying them by a gating signal
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illegal signals

DSP is not just mathematics

it is a technology for interaction with the real world

The conditions guarantee that signals are real objects

of the kind we find in the real world

However, requiring every object to conform to the restrictions

would make the mathematics very hard

So we will often use objects which do not obey the conditions

◼ complex functions/sequences 

◼ objects with infinite energy

and even call them signals!

But this is just to simplify the math

the answers will be the same!
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What isn’t a signal? Part 2
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After trying look here - http://www.dspcsp.com/exercises/X2-1-1.pdf 

http://www.dspcsp.com/exercises/X2-1-1.pdf


Some digital signals 

Zero signal

sn = 0

Constant signal

(  energy!) sn = k

Unit Impulse (UI)

sn = δn,0

Shifted Unit Impulse (SUI)

sn = δn,m

Step (  energy!)

sn = θn
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n=0

n=0

1

n=0

1

n=1

1

n=0



Signals as objects

Signals are more than just a collection of values

(we call the collection of values the signal’s representation)

For example, we can perform operations on signals

◼ gain (and attenuation)  y = 𝑔 x  g is a number, x and y are signals

means  Ɐn= - … + yn = g xn Ɐt  - ≤ t ≤ + y(t) = g x(t)

special cases  g = -1 (inversion),    g<0

◼ add 2 signals       w = x + y x and y are signals

means  Ɐn= - … + wn = xn + yn w(t) = x(t) + y(t)

◼ what does w = x – y mean?  

◼ what does w = ax + by mean? (a,b numbers, w,x,y signals)
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Deterministic vs stochastic signals
Signals (analog or digital) can be deterministic or stochastic

◼ deterministic means that there is some algorithm

that enables us to predict the signal for all time

◼ Stochastic means nondeterministic

the signal is random in some sense

The most stochastic signal of them all is white noise 

even if we observe white noise wn from - to n

we can’t say anything about wn+1

example of non-white stochastic signal
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Periodic signals
Signals (analog or digital) can be periodic

◼ Analog periodic signal  p(t)

ⱻ T > 0 s.t. Ɐt  - ≤ t ≤ + p(t+T) = p(t)

the smallest such T is called the period

◼ Digital periodic signal pn

ⱻ N > 0 s.t. Ɐn= - … + pn+N = pn

the smallest such N is called the period
Is the digital sinusoid sn = A sin (ωn) always periodic? If not, when is it?

Only deterministic signals can be periodic

why can’t a periodic signal be stochastic?

t+T

T



Some periodic digital “signals”

Square wave

Triangle wave

Saw tooth

Sinusoid 

(not always periodic!)

Pulse train
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1

n=0



The ො𝐳 operator

For digital signals we define

The time advance operator

y = ො𝐳 x  means  Ɐn= - … + yn = xn+1

This operator is noncausal (needs a crystal ball)

for what kind of signal can we always implement?

The time delay operator

y = ො𝐳-1 x  means  Ɐn= - … + yn = xn-1

This operator is causal (can always be implemented)

What do you think y = ො𝐳m x means?

What is  ො𝐳-1 ො𝐳 ? ෝ𝐳 ො𝐳-1 ?
Why aren’t ො𝐳 and ො𝐳-1 defined for analog signals?
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Some more operations

◼ first finite difference y =  D x  means yn = xn - xn-1

⚫ note:  D = 1 - ො𝐳-1

and there are higher order finite differences y = Dm x

If the signal is a polynomial in time n what can we say about Dm x ?

n -2 -1 0 1 2 …

x … x-2 x-1 x0 x1 x2 …

D x … x-2 – x-3 x-1 – x-2 x0 – x-1 x1 – x0 x2 – x1 …

D2x … … … ( x0 – x-1 ) – ( x-1 – x-2 )  =

x0 – 2 x-1 + x-2

… … …
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Some more operations

Here are some more operations

◼ the accumulator y =  ො x  is a running summation

yn = σ
m=−∞
𝑛 xm =   yn-1 + xn

the accumulator is the inverse of the finite difference   

ො D = D ො = 1

◼ time reversal : y = Rev(x)  means  yn = x-n

◼ we can compare two signals - how similar are they?

Cxy(m) = σ
n =−∞
∞ xn yn−m

◼ the Hilbert transform H (see later)
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Sampling

From an analog signal we can create a digital signal
by SAMPLING

Under certain conditions 
we can uniquely return to the analog signal !

Even though the digital signal has only 0א values 

and the analog has 1א

This sounds impossible! 

How can we know what happens between 2 samples?
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Digital signals and vectors

Digital signals are in many ways like vectors

… s-5 s-4 s-3 s-2 s-1 s0 s1 s2 s3 s4 s5 …    (x, y, z)

In fact

◼ the zero vector 0 (0n = 0 for all times n)

◼ every two signals can be added to form a new signal x + y = z

◼ every signal can be multiplied by a real number (amplified!)

◼ every signal has an inverse signal -s so that  s + -s = 0 (zero signal)

◼ every signal has a length - its energy 

So, they form a linear vector space (with norm)

Similarly, analog signals, periodic signals with given period, etc.

all form linear vector spaces
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Time

However, signals are not only vectors

With regular vectors

the ordering of the components is arbitrary

We can decide to list them (x,y,z) or (y,z,x) or (z,y,x) !

For digital signals the component order is not arbitrary 

since time is ordered and flows in one direction !

That’s why we could define

– time advance operator ො𝐳 (z s)n = sn+1

– time delay operator ො𝐳-1 (z-1 s)n = sn-1

these wouldn’t make sense for vectors

This is the arrow of entropic time

https://www.youtube.com/watch?v=i6rVHr6OwjI


Bases

the fundamental theorem in linear algebra

All linear vector spaces have a basis (usually > 1 !)

A basis is a set of vectors    b1 b2 … bd that obeys 2 conditions :

1. spans the vector space

i.e., for every vector x :  x = a1 b1 + a2 b2 + … + ad bd

where a1 … ad are a set of coefficients

2A the basis vectors b1 b2 … bd are linearly independent

i.e.,  if a1 b1 + a2 b2 + … + ad bd = 0 (the zero vector)

then a1 = a2 = … = ad = 0

OR

2B The expansion x = a1 b1 + a2 b2 + … + ad bd is unique

(we’ll prove that these 2 statements are equivalent)

Since the expansion is unique

the coefficients a1 … ad represent the vector in that basis
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Equivalence

1. A → B

Given: the basis is linearly independent

a1 b1 + a2 b2 + … + ad bd = 0  → a1 = a2 = … = ad = 0

Assume that the representation is not unique

x = a1 b1 + a2 b2 + … + ad bd = c1 b1 + c2 b2 + … + cd bd

By the definition of zero and that of subtraction of 2 vectors

0 = x-x = (a1 - c1) b1 + (a2 - c2) b2 + … + (ad - cd) bd

From the assumption a1=c1   a2=c2  …  ad=cd

2. B → A

Given: the representation is unique 

x = a1 b1 + a2 b2 + … + ad bd

Assume that the basis is linearly dependent

a1 b1 + a2 b2 + … + ad bd = 0  and a1 ≠ 0 and/or … ad ≠ 0 

Then the representation of the vector 0 is not unique!
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The SUI basis

(the natural basis)

Pick an arbitrary signal

… 1 2 -1 0 3 -2 1 …
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What is the natural basis for the analog signals?



Dimension

The number of elements in the base 

is called the dimension

2-space 3-space

The dimension of the vector space

◼ of all digital signals is denumerably infinite 

◼ of all analog signals is nondenumerably infinite 
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Another basis

Vector fields can have more than one basis

For signals there is another important basis!

Let’s try to guess what it could be …

Fourier Demo

Y(J)S   DSP     Slide 45

http://www.dspcsp.com/progs/fsdemo.html


Fourier Series
In the demo we saw that many periodic analog signals

can be written as the sum of Harmonically Related Sinusoids (HRSs)

If the period is T, the frequency is f = 1/T, the angular frequency is w = 2 p f = 2 p / T

s(t) = a1 sin(wt) + a2 sin(2wt) + a3 sin(3wt) + …

But this can’t be true for all periodic analog signals !
1. sum of sines is an odd function  s(-t) = -s(t)

2. in particular, s(0) must equal 0

Similarly, it can’t be true that all periodic analog signals obey

s(t) = b0  + b1 cos(wt) + b2 cos(2wt) + b3 cos(3wt) + …

Since this would give only even functions  s(-t) = s(t)

We know that any (periodic) function can be written as the sum of 

an even (periodic) function and an odd (periodic) function

s(t) = e(t) + o(t)    where  e(t)  =  ( s(t) + s(-t) ) / 2   and   o(t)  =  ( s(t) - s(-t) ) / 2

So Fourier claimed that all periodic analog signals can be written :

s(t)   =             a1 sin(wt)  + a2 sin(2wt)  + a3 sin(3wt) + … 

+ b0 + b1 cos(wt) + b2 cos(2wt) + b3 cos(3wt) + …

What does this say about the dimension 
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Fourier rejected
If Fourier is right, then-

the sinusoids are a basis for vector subspace of periodic analog signals

Lagrange said that this can’t be true –

not all periodic analog signals can be written as sums of sinusoids !

His reason –

the sum of continuous functions is continuous

the sum of smooth (continuous derivative) functions is smooth

His error –

the sum of a finite number of continuous functions is continuous 

the sum of a finite number of smooth functions is smooth

Dirichlet came up with exact conditions for Fourier to be right :
– finite number of discontinuities in the period

– finite number of extrema in the period

– bounded

– absolutely integratable

Y(J)S   DSP     Slide 47



Why not polynomials?

The Taylor theorem tells us that functions (analog signals) 

can be expanded in 1, t, t2, t3, …

So these are a basis of the space of analog signals

and there is an orthonormal version – the Legendre polynomials

and for discrete time the Szego polynomials

Why aren’t these a useful basis for DSP ?

The Taylor expansion focuses on the area around a specific time t0
The more basis functions we use 

the larger the interval in which we know s(t)

In DSP we are interested in signals at all times

there is no special time t0

The Fourier expansion operates at all times simultaneously

The more basis functions we use

the better the approximation everywhere
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Spectra
Newton used a prism and separates white light into colors

Does the prism paint the light

or were the colors there to begin with?

One can recreate the white light

but only if no color is blocked
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white

whitewhite
spectrum = ghost
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Time and frequency domains

Vector spaces of signals have two important bases (SUIs and sinusoids)

And the representations (coefficients) of signals in these two bases

give us two domains

Time domain (axis)

s(t)          sn 

Basis - Shifted Unit Impulses

Frequency domain (axis)

S(w)           Sk

Basis - sinusoids

We use the same letter capitalized to stress that these are 

the same signal, just different representations

To go between the representations :

 analog signals - Fourier Transform  FT/iFT

 digital signals - Discrete Fourier Transform DFT/iDFT

There is a fast algorithm for the DFT/iDFT called the FFT



Signals - recap

So, we now have to backtrack

The definitions of a signal as a function or sequence of time

are actually merely the representations of the signal

in the time domain

The signal also has a frequency domain representation

The signal is more than just its representation!

DSP is the art of working in both domains

◼ some processing is easier in the time domain

◼ some processing is easier in the frequency domain

and we will have to go back and forth using the Fourier Transform
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Simplest case – a sinusoid

We can now see the two representations using regular frequency

For an analog sinusoid s(t) = A sin(2π f0 t) 

time domain frequency domain

For a digital sinusoid sn = A sin(2π k0 n) 

time domain frequency domain
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f
f0

k
k0

S(f)s(t)

sn Sk

t

n



Simplest case – a sinusoid

We can now see the two representations using angular frequency

For an analog sinusoid s(t) = A sin(ω0 t) 

time domain frequency domain

For a digital sinusoid sn = A sin(ω0 n) 

time domain frequency domain
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ω
ω0

ω
ω0

t

n

S(ω)s(t)

sn S



DC component

The DC component is the spectral component 

at zero frequency   S(0) or S0   (either regular or angular frequency)

s(t) = 1 + sin(ω0 t)

time domain frequency domain

So, we can give two interpretations to the DC component:

TIME DOMAIN INTERPRETATION : the average value of s(t) or sn

FREQUENCY DOMAIN INTERPRETATION : the value of S(0) or S0
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ω
ω0

t 0

s(t) S(ω)



Two frequencies
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t
ω

ω10 ω2

s(t)
S(ω)

What about the sum of two sinusoids (neither DC)?

time domain frequency domain

Two sinusoids with DC

t
ω

ω10 ω2

s(t)
S(ω)

=   sin(ω1 t)  +   sin(ω2 t)

=  1 + sin(ω1 t)  +   sin(ω2 t)



Bandwidth

We can finally define bandwidth

Bandwidth is the width of the spectrum

BW = fmax - fmin

This is a simplistic definition

usually there will be some constant 

depending on how we want to define the point 

when the spectrum is essentially zero

When the spectrum starts from DC

the BW is simply the highest frequency

Note that the bandwidth 

of a single sinusoid (including DC) is zero!
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fmin fmax
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Sampling again!

From an analog signal we can create a digital signal
by SAMPLING

Under certain conditions 
we can uniquely return to the analog signal !

Nyquist (Low pass) Sampling Theorem

if the analog signal is BW limited and 

has no frequencies in its spectrum above FNyquist

then sampling at above 2FNyquist causes no information loss



Does this make sense?

We understand how to interpolate if the analog signal looks like this :

But why can’t the signal do this?

Because that requires frequencies above FNyquist !!
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Does it really have to be > ?

You might hear people casually say 

that you need to sample at twice the highest frequency

WRONG!

You must sample at MORE than twice FNyquist !!

For example, here we sample at precisely twice Fnyquist
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Aliasing

What happens if you sample at too low a frequency?

Wagon wheel demo helicopter demo

This is called aliasing!

The maximum allowed frequency is the Nyquist frequency

fNyquist =  fs / 2

When sampling we have to make sure 

that there are not spectral components over fNyquist

This is done using an anti-aliasing filter

that removes all energy in the spectrum over fNyquist

(we’ll learn about filters later …)
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http://www.dspcsp.com/progs/wagon.html
https://www.youtube.com/watch?v=yr3ngmRuGUc


Aliasing in the time domain

Y(J)S   DSP     Slide 61



What is the highest frequency?

In analog signal processing, frequency has no upper limit

But in DSP the Nyquist frequency is the highest one can go!

How much is it?

When sampling we define n = t / ts and thus k = f / fs

Thus, the highest k is fmax = fNyquist / fs = (½ fs) / fs = ½

What about angular frequency?

The highest ωdigital-max = 2 π fmax = π

All digital signals have finite bandwidth!

What is the Nyquist signal?

Sample a sine exactly twice per period

S = … +1 -1 +1 -1 …
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ω

π 



Reconstructing the signal

So, if we obey the sampling theorem and now have sn

how do we recover s(t) at some other time?

In practice we only need a finite number of sincs
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frequency

 fs/2 = fNyquist

so, each sinc is zero at 

neighboring sample points



Complex exponentials 
Negative frequencies

The Fourier series

s(t)   =             a1 sin(wt)  + a2 sin(2wt)  + a3 sin(3wt) + … 

+ b0 + b1 cos(wt) + b2 cos(2wt) + b3 cos(3wt) + …

has a basis consisting of 2 different kinds of signal sin(kwt) and cos(kwt)

Can we find a series with a single type of basis ?

s(t)   = c0 + c1 sin(wt + Φ1)  + c2 sin(2wt + Φ2)  + … 

where ck = √(ak
2 + bk

2) and Φk = arctan4 ( bk / ak )

works, but isn’t a basis – it contains nondenumerable number of signals!

Substituting cos(kwt) = 
1

2
( eikwt + e-ikwt) and sin(kwt) = 

1

2𝐢
( eikwt - e-ikwt)

we find the Fourier Series in terms of complex exponentials

s(t)  =   σ𝑘=−
 Sk eikwt

For example

a1 sin(wt) + b1 cos(wt) = 
a1

2𝐢
( eiwt - e-iwt) + 

b1

2
( eiwt + e-iwt) = (

a1

2𝐢
+ 

b1

2
) eiwt + (-

a1

2𝐢
+ 

b1

2
) e-iwt

S+1 S−1
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Handling the problems

This is aesthetically pleasing, but raises two problems:

1. the basis functions eikwt are complex 

and thus not signals at all !

2. the frequencies kw can be negative 

what does -2 cycles per second mean ?

Using complex exponentials and negative frequencies 

so simplifies the mathematics 

that we will do anything to allow it

1. We are understand that the true signals are real 

– they are simply Re(eikwt)

At the end of the calculations we look at the real part

2. The negative frequencies are the same as the positive ones

only the phase is different (see demo)
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demo

http://www.dspcsp.com/progs/negfreq.html


FS, FT, DFT – the long journey

Fourier Series (periodic analog signal → 0א coefficients)

Fourier Transform (general analog signal → spectrum)

Discrete Fourier Transform (finite digital signal → digital spectrum)

Y(J)S   DSP     Slide 66

Sk  =  σ𝒏=𝟎
𝑵−𝟏 𝑾𝑵

𝒏𝒌 𝒔𝒏

sn  =  
𝟏

𝑵
σ𝒌=𝟎

𝑵−𝟏 𝑾𝑵
−𝒏𝒌 𝑺𝒌

S(ω)  =  −∞

∞
𝒔 𝒕  𝒆−𝒊𝝎𝒕 𝒅𝒕

s(t)   =   σ𝒌=−∞
∞ 𝑺𝒌 𝒆−𝒊 𝒌𝝎 𝒕

s(t)  =  
𝟏

𝟐𝝅
∞−

∞
𝑺 ω  𝒆𝒊𝝎𝒕 𝒅ω



From FS to FT

The Fourier series transforms a periodic analog signal 

into a denumerable set of coefficients

What about non-periodic analog signals?

A non-periodic signal is the limit of a periodic one with period T→∞
so the base frequency f → 0 !
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ω
ω0

t

S(f)s(t)

ω
ω0/2

t

S(f)s(t)

T

2T

ω
ω0/4

t

S(f)s(t) 4T



The spectrum in the limit

What about a periodic signal that is not a sinusoid?

i.e., has lots of frequencies in its spectrum ? (all multiples of ω0) 
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…

How can you recognize a periodic signal from its spectrum?



The Fourier Transform

So, the sum becomes an integral

and nonperiodic analog signals have Fourier Transforms

which are functions s(t) → S(𝛚)

S(𝛚) = FT( s(t) ) s(t) = iFT( S(𝛚) )    (iFT = FT-1)

The precise definitions are the integrals

Of course FT FT-1 = FT-1 FT = 1

which means that the product of the constants must be 1 / 2π

but there are various conventions as to how to do this
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But we’re interested in DSP!

Sampling the analog signal in the time domain  n = t / ts
the integral becomes a sum

i.e., sampling in the frequency domain  k = f / fs = ω / ωs  

Why don’t we need 2 ks, one for regular and one for angular frequency?

s(t) → sn S(𝛚) → Sk

We won’t prove this here – see the textbook!

but note that ts = 1/fs so f t = f/fs * t/ts = k n 

So the integral over   s(t) e i 2 π f t  

will turn into a sum over   sn e i 2 π n k

The product of coefficients has to be 1/N

and we are following a (bad) convention
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Sk  =  σ𝒏=𝟎
𝑵−𝟏 𝒆−𝒊

𝟐 𝝅 𝒏 𝒌

𝑵  𝒔𝒏

sn  =  
𝟏

𝑵
σ𝒌=𝟎

𝑵−𝟏 𝒆𝒊
𝟐 𝝅 𝒏 𝒌

𝑵 𝑺𝒌



The DFT

So, the transformation now is the Discrete Fourier Transform

Sk = DFT( sn ) sn = iDFT( Sk )    (iDFT = DFT-1)

We will deal with digital signals with N times

Yes, signals are defined for all times

but we don’t care about all other values

you can think that all other values are zero

or that the signal repeats over and over again

The precise form of the DFT and iDFT for finite N is:

Why must there be the same number of ks as ns ?
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Sk  =  σ𝒏=𝟎
𝑵−𝟏 𝒆−𝒊

𝟐 𝝅 𝒏 𝒌

𝑵  𝒔𝒏

sn  =  
𝟏

𝑵
σ𝒌=𝟎

𝑵−𝟏 𝒆𝒊
𝟐 𝝅 𝒏 𝒌

𝑵 𝑺𝒌

k = 0 … N-1

n = 0 … N-1



DFT is a transformation

If we think of the digital signals as vectors

then the DFT and iDFT are (unitary transformation) matrices

They change the representation from the SUI basis to the HRS one

We call the matrix W

So, we can write the DFT like this:
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The Nth root of unity

There’s a better way of writing this

We define the Nth root of unity WN, i.e., a number such that WN
N = 1

It is also called the twiddle factor (we’ll see why later!)

WN = 𝑒−𝑖
2 𝜋

𝑁 for example, W2 = -1    W4 = - i    W8 = -
2

2
(1+i)

Now
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WN

Sk  =  σ𝒏=𝟎
𝑵−𝟏 𝑾𝑵

𝒏𝒌 𝒔𝒏

sn  =  
𝟏

𝑵
σ𝒌=𝟎

𝑵−𝟏 𝑾𝑵
−𝒏𝒌 𝑺𝒌

k = 0 … N-1

n = 0 … N-1

W2

W4
W8



Example : N=2

Let’s try one

For  N=2 we have 2 signal values in the time domain s0 s1

W2 = 𝒆−𝒊
𝟐 𝝅

𝟐 = 𝒆−𝒊 𝝅 = -1

and in the frequency domain S0 = s0 + s1 S1 = s0 - s1
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Example : N=4

Let’s try another one

For  N=4 we have 4 signal values in the time domain s0 s1 s2 s3

W4 = 𝒆𝒊
𝟐 𝝅

𝟒 = 𝒆𝒊 𝝅/𝟒 = -i
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The W matrix in general

The first row is all 1s

so S0 (the DC component) is the sum of all values

it would be the average if we used a different convention

The second row is powers of WN

The third row is powers of WN
2

Row N/2 + 1 is +1 -1 +1 -1

The first column is all 1s

This matrix is not orthogonal but unitary – why?
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n=0
1
2
3

k=0     1       2       3               n-1

N-1



Another meaning for frequency

Frequency is well defined for sinusoids 

s(t) = A sin(ωt + ϕ)     sn = A sin(ωn + ϕ) 

but all other signals have many - an entire spectrum of frequencies

There is an intuitive feeling 

that at every time a signal 

can have a different instantaneous amplitude and frequency

Can we find s(t) = A(t) sin(ω(t) t) for all signals?

Does that make sense?  It can’t be unique!

Given any s(t) pick an arbitrary ω(t) and divide A(t) = s(t) / sin(ω(t) t) 

A consistent meaning of instantaneous amplitude and frequency

can be obtained by a different transform (not Fourier!)

This new transform only works under 2 conditions

◼ the signal has finite bandwidth (which real signals should)

◼ the signal has no DC component – i.e., its time average is zero
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A amplitude

ω (angular) frequency

Φ phase
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Hilbert transform

The instantaneous (analytical) representation

◼ x(t) = A(t) cos ( (t) ) = A(t) cos ( wc t + f(t) )
◼ A(t) is the instantaneous amplitude

◼ f(t) is the instantaneous phase

This is used in information transmission

◼ Amplitude Modulation x(t) = A(t) cos ( wc t ) 

◼ Phase Modulation        x(t) = A cos ( wc t + f(t) ) 

◼ Frequency Modulation x(t) ≠ A cos ( w(t) t ) 

Why not?

Frequency is the derivative of phase
◼ (t) = w0 t   then w(t) = w0

◼ (t) = wc t  + f(t)  then w(t) = wc + 
𝑑

𝑑𝑡
f(t)

wc  center frequency

 carrier frequency



AM and FM
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Modulation means changing some parameter of a signal 

 so that it carries information

Here we change the sinusoid’s amplitude or frequency (phase)
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Hilbert transform

The Hilbert transform is a 90 degree phase shifter

H cos((t) ) = sin((t) )

Hence

◼ x(t) = A(t) cos ( (t) )

◼ y(t) = 𝐇 x(t) = A(t) sin ( (t) )

◼ A t = x2 t + y2(t)

◼ (t) = arctan4 ( ൗy(t)
x(t) )

The instantaneous frequency is the derivative

of the instantaneous frequency

this is equivalent to shifting                            

every spectral component separately by 90o



Uncertainty Theorem

When you see a sinusoid for a long time  Δt

it is easy to measure its frequency :  Ncycles / Δt

But when you only see it for a short time

the uncertainty in frequency Δω is large

The uncertainty theorem (well-known in quantum mechanics) says

Δω Δt  >  constant
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One more transform
What is a transform in mathematics?

An operation that transforms some object into a similar object

while not losing information

For example

◼ the FT transforms a function into a function

◼ The DFT transforms a sequence into a sequence

The Fourier series is not a transform

since it converts a function into a sequence

In DSP we frequently use the z transform, although

◼ it is not a transform (it converts a sequence into a function)

◼ the name z is arbitrary

The zT is only defined for digital signals    why?

Let’s start with something you already know - generating functions
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Generating functions

In math we have the strong tools of analysis (calculus) 

to study functions

For example

we can learn about a function by looking at its derivatives

But we have very few general mechanisms to handle sequences

(which is not good for DSP!)

So, mathematicians came up with a way 

to convert a sequence into a function (the generating function)

and by studying the function we learn a lot about the sequence!

Given a sequence sn where n = 0 … ∞

we define the generating function to be the power series
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Riddle?

Why is this sculpture in Jerusalem called the golden sculpture?
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Example – Fibonacci (1)

We all know the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, … 

which is recursively defined by 

It is well known that the ratio of two consecutive terms

tends to the golden ratio                                              ≈ 1.618 

(note that γ-1 = 1/ γ !)                                         ≈ -0.618  

There is a nonrecursive formula for the nth term!

The generating function is

We want to study this function

BTW, there is a nonrecursive formula for the Nth hexadecimal digit of π!
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Example – Fibonacci (2)
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We’ll use here for the first time some tricks 

that we’ll be using again and again, so let’s do it slowly!

substitute m = n-1

sum from n=2 since the left term has n-2

rename m back to n

substitute m = n-2



Example – Fibonacci (2)

So

Using the techniques learned in elementary calculus we can sketch it

note: x2 + x – 1 = 0 has roots -γ’ = 1/γ and -γ
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-γ

-γ’ = 1/γ



Example – Fibonacci (2)

Using a partial fraction expansion 

and comparing to the sum of a geometric series we can find :

How can this be an integer?

Why does the ratio  fn+1 / fn approach γ ?
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From generating function
to z transform

To use this technique for digital signals we define the z Transform

There are 3 changes as compared to the generating function

1. sum over n=-∞ … +∞    (sum – not integral! only for digital signals)

2. minus in exponent (convention)

3. z instead of x - since z is a complex variable

The zT allows us to use the even more powerful techniques

of complex analysis

The zT is defined over the complex plane

Each point in the plane represents a signal

Sn = zn

Y(J)S   DSP     Slide 89



The z plane
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z=1   sn=1 (DC)

z = -1 
Nyquist frequency!

z=-i   sn = (-i)n 

z=+i   sn = in 

What is the DC signal?

sn  = 1n   =  … +1 +1 +1 +1 …

unit circle
(all z with |z|=1)

What is the Nyquist signal?

sn  = (-1)n   =  … -1 +1 -1 +1 …

z=0   sn=0



Some more signals on the z plane
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What’s the connection with z?

We have used the letter z before -

for the time advance/delay operator

Is there a connection?

If we already know the zT of some signal xn is X(z)

do we need to recalculate to find the zT of ො𝐳-1 x ?

No!

So                   zT(ො𝐳-1 x) = 𝑧-1 zT(x)

What can you say about zT (ො𝐳 x) ? 
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delay operator complex number



What’s the connection with the DFT?

All complex numbers on the unit circle

are of the form e i ω t

(since all complex numbers

are r e i ω t and here r=1)

So the zT on the unit circle is

exactly the FT

If we look at points WN we get exactly the DFT
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ω

e i ω 



Another riddle

Here is a proof that   -1  =  ∞

How much is    𝑆 = 1 +
1

2
+

1

4
+

1

8
+

1

16
+ …  ?

We all remember that S = 2 ! How do we prove this?

𝑆 = 1 +
1

2
1 +

1

2
+

1

4
+

1

8
+

1

16
+ … = 1 +

1

2
𝑆

So    
1

2
𝑆 = 1 and so 𝑆 = 2 !

Now, how much is 𝑆 = 1 + 2 + 4 + 8 + 16 + … ?

I am sure you agree that 𝑆 = ∞ !

But using the same trick

𝑆 = 1 + 2 1 + 2 + 4 + 8 + 16 + … = 1 + 2𝑆
So 𝑆 = -1 !

What’s wrong???

The distributive law only holds if the sum converges
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RoC

The zT is an infinite series

and we can get into trouble when it doesn’t converge!

It turns out that the Region of Convergence of the zT

is always a ring

General case DFT converges if

Sometimes we must use zT since DFT doesn’t converge!

Special case : R1=0 R2=∞  RoC = entire plane

Special case : R1=0 R2<∞  RoC = circle

Special case : R1>0 R2=∞  RoC = outside of a circle
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